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Abstract

Austria is inhabited by more than 80 species of native and non-native freshwater fishes.

Despite considerable knowledge about Austrian fish species, the latest Red List of threat-

ened species dates back 15 years and a systematic genetic inventory of Austria’s fish spe-

cies does not exist. To fulfill this deficit, we employed DNA barcoding to generate an up-to-

date and comprehensive genetic reference database for Austrian fish species. In total, 639

newly generated cytochrome c oxidase subunit 1 (COI) sequences were added to the 377

existing records from the BOLD data base, to compile a near complete reference dataset.

Standard sequence similarity analyses resulted in 83 distinct clusters almost perfectly

reflecting the expected number of species in Austria. Mean intraspecific distances of 0.22%

were significantly lower than distances to closest relatives, resulting in a pronounced bar-

coding gap and unique Barcode Index Numbers (BINs) for most of the species. Four cases

of BIN sharing were detected, pointing to hybridization and/or recent divergence, whereas in

Phoxinus spp., Gobio spp. and Barbatula barbatula intraspecific splits, multiple BINs and

consequently cryptic diversity were observed. The overall high identification success and

clear genetic separation of most of the species confirms the applicability and accuracy of

genetic methods for bio-surveillance. Furthermore, the new DNA barcoding data pinpoints

cases of taxonomic uncertainty, which need to be addressed in further detail, to more pre-

cisely assort genetic lineages and their local distribution ranges in a new National Red-List.

Introduction

DNA barcoding was introduced as a suitable method for biological species discrimination in

animals in 2003 [1], and since then the method has continued to receive unprecedented atten-

tion. For most animal groups, the region near the 5’-end of the cytochrome C oxidase subunit

1 (COI) is established as the standard barcoding marker. Despite certain valid reservations

[e.g. 2–4], an enormous number of studies on various taxonomic groups (e.g., see [5] for plants
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[6], for insects [7,8], for amphibians and reptiles [9], for fungi, and [10] for fish) have accumu-

lated over the last two decades. One particular upside of DNA barcoding is the breadth of use-

ful applications. When applied to fishes, it can be used to investigate freshwater [10] or marine

species [11–13], to determine species regardless of their ontogenetic stage [14–17] or to iden-

tify only residual parts of animals [18]. Furthermore, DNA barcoding data is increasingly used

as a means for tracking catch records, food authenticity, mislabeling or fraud [19–22]. More-

over, freshwater ecosystems are among the most threatened throughout the world and fresh-

water species in Europe have experienced an 83% decline in populations over the last 50 years

[23,24]. Habitat degradation, water pollution, river channel regulation, hydropower exploita-

tion, invasive species and ultimately climate change entail a range of pressures that threaten

freshwater biodiversity worldwide [24–26]. Furthermore, the high level of endemism within

freshwater ecosystems, coupled with challenges in direct observation, requires tools for sound

identification of species and evolutionary significant units to implement conservation efforts

[27,28]. Species discrimination is also critical for biological monitoring and conservation pur-

poses, hence DNA barcoding has gained additional importance in the light of recent alerts of

biodiversity loss across all terrestrial and aquatic habitats [29,30]. Furthermore, biological sur-

veillance increasingly encourages non-invasive sampling techniques like environmental DNA

(eDNA) approaches [31,32], which heavily rely on high-quality genetic reference databases in

order to facilitate reliable read identification and species assignment. Tracking biodiversity,

however, requires precise species determination and while the identification of most adult

(European) fishes can usually be achieved quite easily by experts, some morphologically chal-

lenging cases like the whitefishes (Coregonus spp.), minnows (Phoxinus spp.) or alien species

like weatherfishes (Misgurnus spp.) [32–36] as well as the identification of juvenile fish remain

difficult tasks [14–17]. In such cases, DNA barcoding might not necessarily replace classical

morphology-based approaches as a stand-alone technique, but can aid as a complementary

method to increase resolution [16,37,38]. However, in order to yield optimal identification

results, DNA barcoding is heavily dependent on high quality, deep coverage reference libraries

(e.g. the BOLD database [39]), which profit from the steady augmentation with unambigu-

ously determined reference specimens [10]. Several national barcoding initiatives (such as

GBOL, www.bolgermany.de; Barcoding Fauna Bavarica, barcoding-zsm.de/bfb; SWISSBOL,

www.swissbol.ch; FINBOL, www.finbol.org; NORBOL, www.norbol.org) contribute their

share and ensure continuity and the steady increase in reference data quality [40,41]. The Aus-

trian Barcode of Life initiative (ABOL, www.abol.ac.at) is part of this international network

aiming to contribute to this global database and, concomitantly investigate native biodiversity.

Based on the latest Austrian Red List of endangered teleost fish and lamprey species from

2007 [42] as well as other literature on the Austrian fish fauna [44], approximately 85 fish spe-

cies are present in Austria, 70 of which are considered native. However, these literature sources

differ widely concerning some taxa. For example, the genus Coregonus accounts for 12 out of

85 species in [42], but only a single entity in [43], where it was considered to be a “species com-

plex” due to taxonomic uncertainties. As the current Red List was compiled almost 15 years

ago (last version from 2007) and new/alien invaders/species/lineages [34,35,45–48] have been

recently recorded, the current ABOL-project also provides a valuable source of data for an

update of the current Red List of Austrian teleost fish and lampreys, and a timely overview of

the current freshwater fish diversity of Austria. Comprehensive knowledge on fish diversity is

key for designing appropriate conservation action plans and may also support initial assess-

ment of the need for management actions to be taken against invasive species.

Taken together, this study aims to i) add unambiguously determined reference specimens

of Austrian fish to the international barcode of life database (BOLD), ii) contribute to the cur-

rent understanding of the Austrian fish fauna and investigate the extant diversity (loss of
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species in the wild, new invaders/introductions) and iii) test the discriminating power of DNA

barcoding for Austrian fishes.

Material and methods

The cumulative combination of all teleost fish and lamprey species listed in [43,44] as well as

the current Red List for Austrian freshwater fishes [42] was used to define the extant freshwa-

ter fish diversity in Austria. According to the literature, 70 out of 85 species are listed as native.

Additionally, a newly described species of gudgeon [45] and an alien species of weatherfish

[48] have been added to the known fish diversity. In order to comprehensively cover the Aus-

trian species assemblage, the present dataset consists of two sources of barcode sequences: i)

COI sequences of Austrian fish species already available from BOLD ([32,34,35,45–48] includ-

ing unpublished records (iBOL data release)) and ii) new COI barcode sequences generated in

the course of this study. At the time this dataset was compiled, 1,048 COI sequences of Aus-

trian fishes were available on BOLD (22.03.2021). Of those, samples not identified to the spe-

cies level as well as all samples with sequences less than 500 bp in length were excluded, leaving

377 BOLD sequences. For more in-depth analyses of potentially ambiguous taxa pinpointed

by the initial investigation (see below), sequences from other regions of Europe, outside of

Austria, were downloaded from BOLD and compiled into separate datasets for Phoxinus spp.

([10,32,34,35,45,49–58], DS-EPHO (dx.doi.org/10.5883/DS-EPHO)) and Barbatula barbatula
([10,49–51,59,60], DS-EBBAR (dx.doi.org/10.5883/DS-EBBAR)). For the fresh material, all

samples were opportunistically obtained in the framework of licensed electrofishing surveys in

the years 2014–2021 conducted by a variety of private and public authorities. The rest of the

samples were donated by state natural history museums (Natural History Museum Vienna,

Oberösterreichisches Landesmuseum Linz). All newly collected specimens are stored perma-

nently at Natural History Museums [see project code ‘BCAFL’ on BOLD (www.boldsystems.

org) for sampling and taxonomic information]. Fin clips were taken and stored in pure ethanol

at -20˚C. Extraction of DNA of all 689 samples from 70 localities (Fig 1) followed a rapid Che-

lex protocol [61]. PCR, chain termination sequencing and SephadexTM G-50 (Amersham Bio-

sciences) purification of the DNA barcode region (COI) amplicons using the primer

combination C_FishF1t1 and C_FishR1t1 [62] and FishF1 and Str_R [63] followed [64,65]

with the BioTherm DNA polymerase (GeneCraft Germany) and 50˚C annealing temperature

being the only alterations. Sequences were visualized on an ABI 3500xl capillary sequencer

(Applied Biosystems).

All sequences were edited manually using MEGA 6.06 [66] and uploaded to the BOLD

database, and are accessible under the project ‘ABOL–Barcoding of the Austrian fish and lam-

preys (BCAFL)’. The final dataset of both downloaded and newly generated sequences con-

sisted of 1,016 sequences (DS-AFISH dx.doi.org/10.5883/DS-AFISH) for subsequent analyses

(see Table 1 for number of sequences per species). Visualization of sequence similarity cluster-

ing was conducted using the ‘Taxon ID Tree’ tool implemented on BOLD with the BOLD

aligner algorithm. Intra (Imax)- and interspecific genetic distances (distance to nearest neigh-

bor–DNN) were calculated under the K2P model with the ‘Barcode Gap Analysis’ tool also

implemented on BOLD (K2P distance model, BOLD aligner, complete deletion for ambiguous

base/gap handling). Furthermore, both distance-based, Automatic Barcode Gap Discovery’

(ABGD, [67]) or ‘Assemble Species by Automatic Partitioning’ (ASAP, [68]), and tree-based,

the ‘Bayesian Poisson Tree Processes’ model (bPTP, [69]), species delimitation methods were

conducted. For ABGD, the alignment containing all sequences was downloaded from BOLD

and uploaded to the ABGD webserver (https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.

html). Analyses were run with the Kimura (K2P) TS/TV model with the preset parameters
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(Pmin: 0.001, Pmax: 0.1, Steps: 10, X (relative gap width): 1.5). The same procedure was con-

ducted for ASAP, also run from a webserver (https://bioinfo.mnhn.fr/abi/public/asap/

asapweb.html) with the default parameters. For the bPTP analysis, the phylogenetic input tree

was inferred using the IQ-TREE webserver (http://iqtree.cibiv.univie.ac.at/) with the auto-

matic substitution model and 1000 ultrafast bootstrap replicates [70]. The resulting tree was

converted to Newick format in FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) and

uploaded to the bPTP webserver (https://species.h-its.org/ptp/) where the analysis was run

with 100,000 MCMC generations, the thinning set to 100, a burn-in fraction of 0.1 and a ran-

dom seed [69].

Results

From the 689 samples covering all but one of the extant families (only Anguillidae is missing),

96% of the genera and 95% of all fish species present in Austria (based on [42–44]), 639 COI
barcodes ranging from 512 to 700 bp in length were generated, representing an overall

sequencing success rate of 93%. All sequences are accessible on BOLD (project code ‘BCAFL’)

and GenBank (ON097269—ON097906). The overall dataset (1,016 sequences), including

downloaded records from Austrian fish samples, covers a total of 94% of all families, 98% of all

genera and 96% of all species present in Austria. The sequence similarity clustering resulted in

84 distinct clades largely mirroring morphological species identification and 83 Barcode Index

Numbers (BINs, Fig 2).

One specimen originally identified as Prussian carp (Carassius gibelio) was quite divergent

from other alleged C. gibelio samples. A BLAST search in BOLD/GenBank indicated, with

100% sequence similarity, that this divergent haplotype sampled in Schwarzaubach in Styria

most likely represents the Ginbuna, Carassius langsdorfii, a species hitherto unknown for Aus-

tria. In addition to this new record, discordances between currently accepted species, DNA

Fig 1. Map of sampling localities. Map of Austria and surrounding countries indicating the sampling locations of newly sequenced samples (orange spheres).

https://doi.org/10.1371/journal.pone.0268694.g001
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Table 1. K2P distances (in %) of COI sequences within and between Austrian fish species.

Species BIN N Imax Nearest neighbor DNN

Acipenseriformes

Acipenseridae

Acipenser ruthenus BOLD:AAA8921 3 0 Huso huso 5.32

Acipenser stellatus BOLD:AAA3851 1 na Huso huso 6.34

Huso huso BOLD:AAA3852 2 0 Acipenser ruthenus 5.32

Centrarchiformes

Centrarchidae

Lepomis gibbosus BOLD:AAA5641 14 0.3 Ctenopharyngodon idella 19.67

Cypriniformes

Acheilognathidae

Rhodeus amarus BOLD:AAC4093 15 0 Ballerus ballerus 17.06

Cobitidae

Cobitis elongatoides BOLD:ACE4983 17 0.9 Misgurnus bipartitus 11.73

Misgurnus bipartitus BOLD:ACB5380 2 0 Cobitis elongatoides 11.73

Misgurnus fossilis BOLD:AAK6219 5 0.3 Sabanejewia balcanica 16.56

Sabanejewia balcania BOLD:AAE3193 13 0.9 Cobitis elongatoides 16.07

Cyprinidae

Barbus balcanicus BOLD:AAC5468 11 0.3 Barbus barbus 4.68

Barbus barbus BOLD:AAD1959 29 0.3 Barbus balcanicus 4.68

Carassius auratus BOLD:AAA7176�� 1 na Carassius gibelio 0

Carassius carassius BOLD:AAN9565 4 0 Carassius gibelio 7.64

Carassius gibelio BOLD:AAA7176�� 12 0.9 Carassius auratus 0

Carassius langsdorfii BOLD:AAA7176�� 1 na Carassius gibelio 4.33

Cyprinus carpio BOLD:AAA7175 8 0.3 Carassius gibelio 9.59

Gobionidae

Gobio spp. BOLD:AAC5607; BOLD:ADH1249; BOLD:ABY6890 62 3.69 Romanogobio carpathorossicus 12.72

Pseudorasbora parva BOLD:AAD0138 10 0.6 Romanogobio vladykovi 16.31

Romanogobio carpathorossicus BOLD:ABV4495 19 1.2 Romanogobio vladykovi 10.65

Romanogobio skywalkeri BOLD:ADH6027 27 0.3 Romanogobio uranoscopus 7.98

Romanogobio uranoscopus BOLD:AAF7823 9 0.9 Romanogobio vladykovi 5.28

Romanogobio vladykovi BOLD:AAC5609 36 0.9 Romanogobio uranoscopus 5.28

Leuciscidae

Abramis brama BOLD:AAC8592� 9 0.3 Blicca bjoerkna 0

Alburnoides bipunctatus BOLD:AAC4344 26 1.2 Ballerus sapa 9.98

Alburnus alburnus BOLD:AAB6906 35 0.9 Alburnus chalcoides 2.73

Alburnus chalcoides BOLD:AAB6908 9 0.6 Alburnus alburnus 2.73

Ballerus ballerus BOLD:AAZ6088 1 na Ballerus sapa 2.13

Ballerus sapa BOLD:AAF3389 6 0 Ballerus ballerus 2.13

Blicca bjoerkna BOLD:AAD3588 7 4.68 Abramis brama 0

Chondrostoma nasus BOLD:AAD7920 40 1.2 Telestes souffia 5.6

Leucaspius delineatus BOLD:ACF4430 1 na Alburnus alburnus 6.28

Leuciscus aspius BOLD:AAC8137 13 0.3 Leuciscus idus 5.33

Leuciscus idus BOLD:AAD5733 5 0 Leuciscus leuciscus 0

Leuciscus leuciscus BOLD:AAD5733 8 0.6 Leuciscus idus 0

Pelecus cultratus BOLD:AAF5575 4 0 Ballerus ballerus 10.72

Phoxinus lumaireul BOLD:AAC8034 19 2.43 Phoxinus phoxinus 0

(Continued)
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Table 1. (Continued)

Species BIN N Imax Nearest neighbor DNN

Phoxinus phoxinus BOLD:AAC8034;

BOLD:AAC8036; BOLD:ADL2661; BOLD:ACE5740

63 6.28 Phoxinus lumaireul 0

Rutilus meidingeri BOLD:AAA5494 9 0 Rutilus rutilus 4.3

Rutilus rutilus BOLD:ABZ3785 26 0.9 Rutilus meidingeri 4.3

Rutilus virgo BOLD:AAE3231; BOLD:ADG8651 5 2.11 Rutilus rutilus 5.59

Scardinius erythrophthalmus BOLD:AAC1452 16 1.81 Alburnus chalcoides 8.25

Squalius cephalus BOLD:AAD8346 36 1.81 Chondrostoma nasus 6.26

Telestes souffia BOLD:AAE9853 6 0.9 Chondrostoma nasus 5.6

Vimba vimba BOLD:AAD9149 8 0 Blicca bjoerkna 3.36

Nemacheilidae

Barbatula barbatula BOLD:AAA1239; BOLD:AAA1243 17 4.66 Misgurnus fossilis 19.82

Tincidae

Tinca tinca BOLD:AEJ6454 5 2.13 Hypophthalmichthys molitrix 8.88

Xenocyprididae

Ctenopharyngodon idella BOLD:ACL1923 4 0 Hypophthalmichthys molitrix 9.75

Hypophthalmichthys molitrix BOLD:AAF6633 4 0.6 Hypophthalmichthys nobilis 4.98

Hypophthalmichthys nobilis BOLD:ADK6840 1 na Hypoophthalmichthys molitrix 4.98

Esociformes

Esocidae

Esox lucius BOLD:AAA5988 9 0.3 Sander lucioperca 20.17

Umbridae

Umbra krameri BOLD:AAO6269 2 0 Salmo trutta 17.11

Gadiformes

Gadidae

Lota lota BOLD:AAB2046 14 0.6 Huso huso 19.77

Gobiiformes

Gobiidae

Babka gymnotrachelus BOLD:AAX5968 1 na Ponticola kesslerii 9.01

Neogobius melanostomus BOLD:AAC0218 28 0 Ponticola kesslerii 16.76

Ponticola kesslerii BOLD:AAD8740 9 0 Babka gymnoctrachelus 9.01

Proterorhinus semilunaris BOLD:AAD0669 11 0 Ponticola kesslerii 13.21

Perciformes

Cottidae

Cottus gobio BOLD:ABX6144 36 2.42 Pungitius pungitius 18.21

Gasterosteidae

Gasterosteus aculeatus BOLD:AAA8488 12 0.9 Pungitius pungitius 17.62

Pungitius pungitius BOLD:AAA8317 6 0 Gasterosteus aculeatus 17.62

Percidae

Gymnocephalus baloni BOLD:AAL5632 1 na Gymnocephalus schraetser 2.75

Gymnocephalus cernua BOLD:ACO0744 7 0.3 Gymnocephalus schraetser 4.99

Gymnocephallus schraetser BOLD:AAB0394 6 0 Gymnocephalus baloni 2.75

Perca fluviatilis BOLD:AAB0356 28 1.2 Sander lucioperca 13.83

Sander lucioperca BOLD:AAD1749 11 0.9 Sander volgensis 4.0

Sander volgensis BOLD:AAJ5463 4 0 Sander lucioperca 4.0

Zingel streber BOLD:AAE6523 10 0.3 Zingel zingel 6.58

Zingel zingel BOLD:AAH8409 15 0 Zingel streber 6.58

Petromyzontiformes

(Continued)
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barcodes and BIN assignment were detected in gudgeons of the genus Gobio (three distinct

clades, three individual BINs), minnows of the genus Phoxinus (four distinct clades, 4 individ-

ual BINs) and stone loaches (Barbatula barbatula, two distinct clades, two individual BINs).

Additionally, two different BINs were detected in the Danube roach (Rutilus virgo, BOLD:

AAE3231 and BOLD:ADG8651) including a unique new BIN for Austria. Furthermore, BIN

sharing was detected in four cases (Leuciscus leuciscus/L. idus, BOLD:AAD5733; Abramis
brama/Blicca bjoerkna, BOLD:AAC8592; Carassius langsdorfii/C. gibelio/C. auratus, BOLD:

AAA7176 and Ameiurus nebulosus/A. melas, BOLD:AAA7255). These results were also largely

reflected by the analysis of genetic distances (Table 1).

With mean intra- and interspecific distances of 0.22 and 6.49% respectively, the barcode

gap (i.e., interspecific distances exceeding intraspecific distances) was well reflected for most of

the species (Fig 3). Only Blicca bjoerkna (maximum intraspecific distance (Imax): 4.68 (due to a

single morphologically clear B. bjoerkna specimen with introgressed Abramis brama mtDNA),

the species/lineages of Phoxinus spp. (Imax: 6.28) and Eudontomyzon mariae (Imax: 5.25)

showed higher intraspecific than interspecific distances. Additionally, distances to conspecifics

exceeding 1.0% were also detected within Alburnoides bipunctatus, Barbatula barbatula, Chon-
drostoma nasus, Cottus gobio, Gobio spp., Perca fluviatilis, Romanogobio carpathorossicus,

Table 1. (Continued)

Species BIN N Imax Nearest neighbor DNN

Petromyzontidae

Eudontomyzon mariae BOLD:ABY5382 17 5.25 Lampetra planeri 4.0

Lampetra planeri BOLD:AAB6058 7 0 Eudontomyzon mariae 4.0

Salmoniformes

Salmonidae

Coregonus spp. BOLD:ACA5470 12 0 Salmo trutta 12.22

Hucho hucho BOLD:AAE1471 8 0 Salmo trutta 10.41

Oncorhynchus mykiss BOLD:AAA1627 7 0.6 Salvelinus umbla 9.63

Salmo salar BOLD:AAA3435 2 0 Salmo trutta 6.59

Salmo trutta BOLD:AAB3872 26 0.9 Salmo salar 6.59

Salvelinus fontinalis BOLD:AAC3575 5 0.6 Salvelinus umbla 7.6

Salvelinus umbla BOLD:ABZ0871 6 0.3 Salvelinus fontinalis 7.6

Thymallus thymallus BOLD:AAD6463 18 2.13 Coregonus spp. 14.26

Siluriformes

Ictaluridae

Ameiurus melas BOLD:AAA7255��� 2 0 Ameiurus nebulosus 2.75

Ameiurus nebulosus BOLD:AAA7255��� 6 0 Ameiurus melas 2.75

Siluridae

Silurus glanis BOLD:ACL1933 5 0 Ameiurus melas 18.05

Barcode Index Numbers (BIN), the number sequences per species (N), the maximum intraspecific (Imax) and the minimum distance (DNN) to the nearest neighbor are

given.

� indicates the cluster of the common bream (Abramis brama), which contains one sequence of a morphologically clearly determined Blicca bjoerkna.

��indicates the cluster of Carassius gibelio, C. langsdorfii and C. auratus, which share the same BIN, but appear on distinct branches on the NJ tree and can also clearly

be determined based on their morphology.

��� indicates Ameiurus nebulosus and A. melas which share a BIN but result on distinct branches on the NJ tree. Note, the systematic classification used here is based on

[71] except for gudgeons of the genus Romanogobio, where we follow [45], trouts of the genus Salmo, where we follow [72] and coregonids of the genus Coregonus,
which cannot be distinguished by DNA barcodes due to recent diversification [10].

https://doi.org/10.1371/journal.pone.0268694.t001
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Fig 2. NJ tree based on DNA barcode sequences of Austrian fish species. NJ tree of Austrian teleost fish and lamprey species based on K2P distances of 1,016

COI DNA barcode sequences. The topology of the tree was inferred with the “Taxon ID Tree” tool implemented in BOLD and visualized in FigTree v1.4.4

(http://tree.bio.ed.ac.uk/software/figtree/). Black frames mark species that are investigated in a broader geographic context further below.

https://doi.org/10.1371/journal.pone.0268694.g002
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Fig 3. Visualization of the ‘Barcode gap’. Barcode gap plot of the distance to the nearest neighbor (NN) vs. the

maximum intraspecific distance of Austrian fish species. Dots above the red line suggest the presence of a barcoding

gap. Outliers were detected in Abramis brama, Barbus barbus, Blicca bjoerkna, Carassius auratus, Carassius gibelio,

Eudontomyzon marie, Leuciscus idus, Leuciscus leuciscus and Phoxinus spp.

https://doi.org/10.1371/journal.pone.0268694.g003

Fig 4. NJ tree of European Barbatula species. Phylogeny of European Barbatula species based on COI barcode sequences available on BOLD and from this

study. Species names and BINs are given, countries of origin are indicated by acronyms in parentheses.

https://doi.org/10.1371/journal.pone.0268694.g004
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Rutilus virgo, Scardinius erythrophthalmus, Squalius cephalus, Tinca tinca and Thymallus thy-
mallus (Table 1).

However, except for Gobio spp. and Barbatula barbatula these cases did not result in addi-

tional BINs. Similar results were also obtained from the other species delimitation analyses

(see S1 Table). ABGD resulted in 88 species in the initial and 90 species in the recursive parti-

tion using a prior maximal distance of P = 0.0129. ASAP on the other hand reported 65–91

partitions/species based on the ten best partitioning schemes regarding the ASAP score. Even

though the exact grouping of samples/species varies slightly between the individual priors and

partitions, the overall patterns are the same, e.g., Gobio gudgeons are lumped into two groups

despite the three lineages found by [47], Phoxinus minnows result in at least three distinct

groups and that Ameiurus nebulosus and A. melas result in different groups despite their

shared BIN. Finally, the maximum likelihood partitioning of the tree-based bPTP resulted in

88 species. Analysis of available pan-European stone loach data revealed at least five distinct

lineages (and BINs) of Barbatula barbatula in Europe (Fig 4). Two of those lineages are solely

comprised by samples from Germany or Russia, while the other three lineages contain samples

from several countries reflecting a geographical pattern with an eastern (Germany and Aus-

tria), Danubian, and Northeastern European clade. Interestingly, the Danubian clade branches

off from B. vardarensis native to Greece and North Macedonia, with which it shares a common

BIN (BOLD:AAA1243).

Minnows of the genus Phoxinus, however, revealed a far more complex pattern based on

their COI sequences. Besides country- and Balkan-specific MOTUs, four Central European

lineages containing samples from several countries including Austria were found (Fig 5, S1

Table). Assignment of species names to these molecular taxonomic units (MOTUs) proved

difficult, as each cluster contained specimens of various determinations (e.g. BOLD:ADL2661

contained Phoxinus sp., P. phoxinus and P. marsilii). Nonetheless, our results are wholly con-

gruent with the presence of more than one species of Phoxinus in Austria and consequently

also in Europe [35].

Discussion

In this study, we present an almost complete DNA barcode reference inventory for Austrian

fishes. From the 639 newly generated COI barcode sequences, only the European eel (Anguilla
anguilla) as well as two sturgeon species, namely the Russian sturgeon (Acipenser gueldenstaed-
tii) and the ship sturgeon (Acipenser nudiventris), which have also been listed for Austria [43],

are missing. For the two former species, PCRs (of old museum tissue) were unsuccessful, for

the latter species no samples could be obtained. For all species, two or more samples were

obtained, except for the racer goby (Babka gymnotrachelus), Balon’s ruffe (Gymnocephalus
baloni), the stellate sturgeon (Acipenser stellatus), the blue bream (Ballerus ballerus), the sun-

bleak (Leucaspius delineatus) and the bighead carp (Hypophthalmichthys nobilis), for which

only a single sample was available. Whitefish (Coregonus spp.) were not treated as distinct spe-

cies in our study as there is no consensus yet on whether the different forms found in the dif-

ferent lakes represent different species or ecotypes and because previous studies have shown

that divergence of these species/ecotypes is too recent to be fully resolved by mtDNA data

[73,74]. These issues are further complicated by hybridization with closely related introduced

species throughout their ranges [73,74]. Similar to previous studies [10], analysis of the DNA

barcoding data largely mirrors the known national species inventory. However, we found a

few cases of BIN sharing and deep intraspecific divergence, potentially indicating cryptic

diversity and/or new species records for Austria, in our new dataset.
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Fig 5. NJ tree of European Phoxinus species. Phylogeny of European Phoxinus species based on COI barcode

sequences available on BOLD and from this study. Species names and BINs are given, countries of origin are indicated

by acronyms in parentheses.

https://doi.org/10.1371/journal.pone.0268694.g005
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Taxa sharing BINs

BIN sharing was detected with two species pairs and one trio of species: i) Leuciscus leuciscus
and Leuciscus idus, ii) Ameiurus nebulosus and Ameiurus melas and iii) Carassius auratus, Car-
assius gibelio and Carassius langsdorfii. For L. leuciscus and L. idus, hybridization and mito-

chondrial replacement has been reported [75], resulting in a shared common haplotype and

consequently the same BIN (BOLD:AAD5733). The black bullhead (Ameiurus melas) and the

brown bullhead (A. nebulosus) shared the same BIN (BOLD:AAA7255), even though they are

clearly separated in the NJ tree (see Fig 2) and other species delimitation analyses. However,

this pattern is not an artefact of the Austrian samples alone, but a general pattern evident on

BOLD, as this particular BIN is comprised nearly equally by A. melas and A. nebulosus samples

(https://www.boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:

AAA7255), underscoring the shallow divergence between the two species. The two species can

be clearly distinguished by morphological characters [76], but introgressive hybridization has

been reported repeatedly [77 and references therein] and could be an additional problem for

molecular delimitation. Furthermore, genetic distances (2.75 DNN) among these two taxa,

albeit high enough to support two distinct species, are fairly low compared to most species.

Thirdly, the Prussian carp (Carassius gibelio) and the goldfish (Carassius auratus) share the

same BIN with C. langsdorfii. All three species belong to the C. auratus species complex and

have long been considered different sub-species of C. auratus, but molecular genetic analyses

indicated their distinctness, despite shallow divergence (e.g., [78,79]), a pattern that we also

find in our data (see e.g. NJ tree in Fig 2).

Cases of deep intraspecific divergence

In addition to the few taxa sharing BINs, we found three cases of deep divergence, i.e. in the

gudgeons of the genus Gobio, in the stone loach, Barbatula barbatula, and in the minnows of

the genus Phoxinus.
Gudgeons of the genus Gobio in Austria comprise three distinct mitochondrial lineages

that were also resolved as distinct BINs (BOLD:AAC5607, BOLD:ABY6890 and BOLD:

ADH1249), which is in sharp contrast to [42,43] who only list one species, G. gobio, and [44],

who suggest the presence of two species, G. gobio and G. obtusirostris, for the Austrian Danube

system with a potential hybrid zone in the Upper Danube. A recent detailed study [47] found

that the three mitochondrial lineages present in Austria correspond to G. gobio, G. obtusirostris
and a third lineage that is closely related to other Gobio species from the Balkans. Patterns of

genetic diversity suggest that these originally allopatric lineages/species expanded their distri-

bution recently (probably post-glacially) to come into secondary contact and hybridize in the

(Austrian) Danube system, thus forming a large hybrid zone in Austria. Even though there

seems to be a cline in the relative frequency of the distinct haplogroups from the upper to the

lower parts of Danube system [47,80], the distribution of these lineages/species throughout

Austria (and adjacent countries) is currently unresolved, and particularly complicated. Barba-
tula barbatula poses another ambiguous case, where sequences from the 17 morphologically

identified samples can be allocated into two separate clusters in the NJ tree, forming two BINs

(BOLD:AAA1239 and BOLD:AAA1243). This result is partly in line with the three clades

recovered by [10], who also found high levels of divergence (<7.02% sequence divergence),

potentially indicating cryptic species. The two lineages recovered in Austrian samples (4.66%

divergence) are part of the eastern as well as the southern (Danubian) lineage [10] (Fig 4). This

pattern also becomes evident when looking at the pan-European dataset (Fig 4). In addition to

the Central European lineages, two Eastern/Northeastern lineages were recovered. This find-

ing is consistent with previous studies [10,81], which also found pronounced structure based
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on other markers, but did not include Northern European samples. Furthermore, this pattern

is similar to what has been observed in gudgeons of the genus Gobio [47], with separate glacial

refugia and post-glacial secondary contact and admixture. Similarly, additional nuclear genetic

or genomic data would be required to comprehensively dis-entangle the complex pattern

observed in the mitochondrial data.

The most complex pattern was found in the genus Phoxinus (the European minnow species

complex). While [44] reported Phoxinus phoxinus and P. lumaireul for Central Europe,

[34,35,46] identified four species and three additional lineages of Phoxinus in Austria. These

are Phoxinus marsilii and P. lumaireul (represented by three different subclades), P. csikii and

P. phoxinus (introduced). Discriminating between Phoxinus species and dis-entangling their

respective distribution ranges and geographical origins is impeded by subtle morphological

differences as well as small interspecific genetic variation, which cannot be detected by DNA

barcoding. Species delimitation is further complicated by a long and irreproducible history of

stocking and translocation as well as hybridization [35]; thus, further in-depth morphological

and genetic/genomic investigations are needed.

First record of ginbuna, Carassius langsdorfii, for Austria

Two species of Carassius, the Crucian carp (C. carassius) and the Prussian carp (C. gibelio), are

native to Europe. Additionally, the goldfish (C. auratus) was introduced in the 17th century as

an ornamental fish and has established feral populations throughout Europe (e.g., [44,82,83]),

a pattern mirrored by more recent introductions of eastern Asiatic strains of C. gibelio [84,85].

Since 2000, another non-native Carassius species, C. langsdorfii, originally distributed in

Japan, has been reported from several European countries [82,86,87], most likely introduced

as unintended imports together with koi carps (Cyprinus rubrofuscus) [86]. As this species has

hitherto not been reported for Austria, our finding of C. langsdorfii in the Schwarzaubach in

Styria is the first evidence for its occurrence in Austria. Frequent hybridization among Caras-
sius species, and between Carassius and other cyprinid species, as well as the presence of both

sexually reproducing and gynogenetic populations complicate species identification in this

genus. In fact, the only species to be reliably identified based on morphology is C. carassius,
whereas genetic data are indispensable for identifying the other species in the genus (e.g. [82]).

Indeed, knowledge about the present distribution of C. langsdorfii in Europe is almost exclu-

sively based on mtDNA data [87]. However, a caveat of this strategy is that Carasissus species

have a high propensity to hybridize, and thus hybridization and introgression might lead to

erroneous species identifications when based on mtDNA alone. Nonetheless, the discovery of

a C. langsdorfii haplotype at least confirms the presence of C. langsdorfii mtDNA in Austria.

Whether our specimen is indeed C. langsdorfii or a hybrid will have to be confirmed by addi-

tional, ideally nuclear genetic/genomic data. Phenotypically, this individual has a lower body

(with fewer scale rows) than C. gibelio sensu stricto caught at the same site (see S1 Fig). The

specimen also differed from C. gibelio sensu stricto specimens by its lighter ventral and darker

dorsal side (compare with [86]), suggesting it might indeed be C. langsdorfii.

Nomenclatural issues

Uncertainties in nomenclature such as in the above-mentioned example of C. langsdorfii, but

also taxonomic revisions or even ‘under-studied’ groups constitute an un-negligible issue for

online repositories such as BOLD but also museum collections. This becomes apparent when,

e.g., looking at gudgeons. Both, [42] and [43] listed Gobio kesslerii as present in Austria,

whereas [44] already used Romanogobio kesslerii. According to [45], however, the correct spe-

cies name should be Romanogobio carpathorossicus, and here we follow this suggestion but
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note that R. carpathorossicus is listed as a synonym of R. kessleri in Eschmeyer’s catalogue of

fishes [71]. A similar situation is found in gudgeons of the genus Gobio, where [42,43] only list

G. gobio, whereas [44] report G. gobio and G. obtusirostris from the Danube system with the

potential existence of a hybrid zone. The most recent work by [47] however, found three dis-

tinct lineages (likely corresponding to G. gobio, G. obtusirostris and a third, Balkans-derived

lineage) to which we also adhere in this study and which was confirmed by [80]. The distribu-

tion of these lineages throughout Austria (and adjacent countries) is currently unresolved, and

further complicated by high morphological variability and hybridization [47].

Systematics and taxonomy change over time simply due to the accumulation of new or

more comprehensive data [45,88–91]. Therefore, museum collections as well as digital

(sequence) repositories need to be periodically updated to reflect currently accepted nomen-

clature. In museum collections, this translates to an iterative additive labelling of physical

objects (the verbatim labels are never changed) as well as an immaculate concurrent (digital)

documentation [92]. Regarding BOLD, skilled personal observing and incorporating current

changes and novelties in the taxonomic backbone are crucial to uphold user confidence and

integrity with regards to content. Despite the undisputable requirement of additional effort

and resources, this accuracy and timeliness will ensure maximum reliability and use of refer-

ence barcode data (in the sense of voucher-related DNA sequences) as well as museum collec-

tions for future applications.

This barcode-based inventory of the Austrian fish fauna has brought some new additions

[45,47,48,93] and while some of these novelties are shared with adjacent countries [e.g. [10,33],

others are original to Austria [45] underscoring the need to update a national Red List. We

argue that national red lists should increasingly be augmented by genetic data [10,94–96],

which allows for non-invasive monitoring [54] and might illuminate the need for further

detailed ecological or systematic study for problematic or ambiguous taxa [31,32]. Here, we

provide the first comprehensive DNA barcode reference set for Austrian fishes, which may

serve as a basis for a regularly updated Austrian Red List of fish species, aid in sample/speci-

men identification for both basic and applied monitoring, provide the basis for sound fisheries

management and conservation of native fish populations and facilitate read determination in

eDNA or meta-barcoding studies. Furthermore, our data update helps to increase the coverage

of barcoding data at the European scale and thus will likely be useful in a wider biogeographic

context.

Supporting information

S1 Fig. Pictures of Carassius samples from Schwarzaubach, Styria. A) C. langsdorfii, B-D) C.
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gang Gessl, Marija Mladinić, Christian Sturmbauer, Josef Wanzenböck, Steven J. Weiss,
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Wolfgang Gessl, Marija Mladinić, Christian Sturmbauer, Josef Wanzenböck, Steven J.
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