Skip to main content
Log in

Mitochondrial phylogeny, diversity, and ichthyogeography of gobies (Teleostei: Gobiidae) from the oldest and deepest Caspian sub-basin and tracing source and spread pattern of an introduced Rhinogobius species at the tricontinental crossroad

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Here, we combined archived mitochondrial sequences for Ponto-Caspian gobiids with new sequences from the south Caspian basin to assess and evaluate its gobioid diversity and taxonomy, and to provide a first mitochondrial-based phylogenetic and phylogeographic framework. We demonstrate that: (i) Proterorhinus nasalis is the tubenose goby taxon in the saline waters of the southern Caspian Sea, whereas the name Pr. semipellucidus for the Azov/northern Caspian Sea/Volga River populations is likely be resurrected depending on the outcome of an integrative taxonomical approach; (ii) the deep-water goby Ponticola bathybius should be re-assigned to the genus Neogobius, as it is the sistergroup of N. melanostomus; (iii) specimens previously identified as Po. cyrius and Po. iljini from the south Caspian basin appear conspecific with Po. iranicus and Po. gorlap, respectively, and should be omitted from the checklist of Iranian and south Caspian freshwater fishes; (iv) the low stand of the Caspian Sea during the Tyurkyanian regression is inferred to have led to the isolation and evolution of Po. iranicus; and (v) similarities in genetic background, and invasion history of Rhinogobius sp. and Pseudorasbora parva in Iran and Turkmenistan indicate that the initial introduction of both species into the region possibly originated from Japan in the 1980s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The COI sequence dataset generated and analyzed during this study is available in the GenBank repository. Specimens used in the present study are deposited as voucher specimens in the Zoological Museum of Shiraz University, Collection of Biology Department (ZM-CBSU), and the SNSB-Bavarian State Collection of Zoology, Munich (SNSB-ZSM).

References

  • Abbasi, K., 2017. Fishes of Guilan. Iliya Culture Publication, Rasht.

    Google Scholar 

  • Abdoli, A., B. W. Coad & M. Naderi, 2000. First record of Rhinogobius similis, Gill 1895 in Iran. Iranian Journal of Fisheries Sciences 9: 73–76.

    Google Scholar 

  • Agorreta, A., D. San Mauro, U. K. Schliewen, J. L. Van Tassell, M. Kovačić, R. Zardoya & L. Rüber, 2013. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Molecular Phylogenetics and Evolution 69: 619–633.

    Article  PubMed  Google Scholar 

  • Ahnelt, H. & J. Holcik, 1996. Distribution of two species of the genus Neogobius (Pisces: Gobiidae) in the catchment area of the southern Caspian Sea. Acta Universitatis Carolinae Biologica 40: 99–114.

    Google Scholar 

  • Akihito, S. K., Y. Ikeda & M. Aizawa, 2013. Gobioidei. In: Nakabo, T. (ed), Fishes of Japan With Pictorial Keys to the Species. Tokai University Press, Tokyo, pp 1347–1608.

    Google Scholar 

  • Aliev, D. S., A. I. Sukhanova & F. M. Shakirova, 1988. Fishes of the Inland Waters of Turkmenistan. Ylym, Ashkhabad.

    Google Scholar 

  • Audzijonyte, A., M. E. Daneliya & R. Väinölä, (2006). Comparative phylogeography of Ponto‐Caspian mysid crustaceans: Isolation and exchange among dynamic inland sea basins. Molecular Ecology 15: 2969–2984.

    Article  CAS  PubMed  Google Scholar 

  • Avise, J. C., 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge.

    Book  Google Scholar 

  • Avise, J. C. & R. M. Ball, (1990). Principles of genealogical concordance in species concepts and biological taxonomy. Oxford Surveys in Evolutionary Biology 7: 45–67.

    Google Scholar 

  • Baldwin, C. C., J. H. Mounts, D. G. Smith & L. A. Weigt, 2009. Genetic identification and color descriptions of early life-history stages of Belizean Phaeoptyx and Astrapogon (Teleostei: Apogonidae) with comments on identification of adult Phaeoptyx. Zootaxa 26: 1–22.

    Google Scholar 

  • Berg, L. S., 1949. Freshwater Fishes of the USSR and Adjacent Countries. Program for Scientific Translations, Jerusalem.

  • Boldyrev, V. S. & N. G. Bogutskaya, 2007. Revision of the tadpole-gobies of the genus Benthophilus (Teleostei: Gobiidae). Ichthyological Exploration of Freshwaters 18: 31–96.

    Google Scholar 

  • Brown, J. E. & C. A. Stepien, (2008). Ancient divisions, recent expansions: Phylogeography and population genetics of the round goby Apollonia melanostoma. Molecular Ecology 17: 2598–2615.

    Article  CAS  PubMed  Google Scholar 

  • Bruford, M. W., O. Hanotte, J. F. Y. Brookfield & T. A. Burke, 1992. Single-locus and multilocus DNA fingerprinting. In: Hoezel, C. (ed), Molecular Genetics Analysis of Populations: A Practical Approach. Oxford University Press, New York, pp 225–269.

    Google Scholar 

  • Carstens, B. C., T. A. Pelletier, N. M. Reid & J. D. Satler, 2013. How to fail at species delimitation. Molecular Ecology 22: 4369–4383.

    Article  PubMed  Google Scholar 

  • Chang, C. H., K. T. Shao, H. Y. Lin, Y. C. Chiu, M. Y. Lee, S. H. Liu & P. L. Lin, 2017. DNA barcodes of the native ray‐finned fishes in Taiwan. Molecular Ecology Resources 17: 796–805.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., X. Ma, Y. Shen, Y. Mao & S. He, 2015. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding. Scientific Reports 5: 1–12.

    Google Scholar 

  • Clement, M., D. Posada & K. A. Crandall, 2000. TCS: A computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.

    Article  CAS  PubMed  Google Scholar 

  • Coad, B. W., 1996. Exotic and transplanted fishes in Southwest Asia. Publicaciones Especiales Instituto Español de Oceanografía 21: 81–106.

    Google Scholar 

  • Coad, B. W., 1998. Systematic biodiversity in the freshwater fishes of Iran. Italian Journal of Zoology 65: 101–108.

    Article  Google Scholar 

  • Coad, B. W., 2016. Freshwater Fishes of Iran [available on internet at www.briancoad.com]. Accessed 12 Oct 2016.

  • Coad, B. W. & A. Abdoli, 1993. Exotic fish species in the fresh waters of Iran. Zoology in the Middle East 9: 65–80.

    Google Scholar 

  • Coad, B. W. & A. Abdoli, 2000. Rhinogobius cf. similis Gill, 1859, a goby new to the fish fauna of Iran and the problem of alien invasions. Zoology in the Middle East 20: 55–59.

    Article  Google Scholar 

  • Courtenay, W. R. & J. R. Stauffer, 1984. Distribution, Biology, and Management of Exotic Fishes. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Cristescu, M. E. A., P. D. N. Hebert & T. M. Onciu, 2003. Phylogeography of Ponto‐Caspian crustaceans: A benthic–planktonic comparison. Molecular Ecology 12: 985–996.

    Article  CAS  PubMed  Google Scholar 

  • Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9: 772–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont, H. J., 1998. The Caspian Lake: History, biota, structure, and function. Limnology and Oceanography 43: 44–52.

    Article  CAS  Google Scholar 

  • Dumont, H. J., 2000. Endemism in the Ponto-Caspian fauna, with special emphasis on the Onychopoda (Crustacea). Advances in Ecological Research 31: 181–196.

    Article  Google Scholar 

  • Durand, J. -D., H. Persat & Y. Bouvet, (1999). Phylogeography and postglacial dispersion of the chub (Leuciscus cephalus) in Europe. Molecular Ecology 8: 989–997.

    Article  CAS  PubMed  Google Scholar 

  • Eagderi, S., A. Jouladeh-Roudbar, A. Soleymani & T. Hosseinpour, 2017. The first record of Rhinogobius similis Gill, 1859 from the Namak Basin, Iran. Shil 5: 39–46.

    Google Scholar 

  • Eagderi, S. & M. Moradi, 2017. Range extension of the lake goby Rhinogobius similis Gill, 1859 (Teleost: Gobiidae) to Urmia Lake basin in northwestern Iran. Biharean Biologist 11: 123–125.

    Google Scholar 

  • Eagderi, S., M. Nasri & E. Çiçek, 2018. First record of the Amur goby Rhinogobius lindbergi Berg 1933 (Gobiidae) from the Tigris River drainage, Iran. International Journal of Aquatic Biology 6: 202–207.

    Google Scholar 

  • Economidis, P. S. & P. J. Miller, 1990. Systematics of freshwater gobies from Greece (Teleostei: Gobiidae). Journal of Zoology 221: 125–170.

    Article  Google Scholar 

  • Epitashvili, G., M. Geiger, J. J. Astrin, F. Herder, B. Japoshvili & L. Mumladze, 2020. Towards retrieving the Promethean treasure: A first molecular assessment of the freshwater fish diversity of Georgia. Biodiversity Data Journal 8: e57862.

    Article  PubMed  PubMed Central  Google Scholar 

  • Esmaeili, H. R., B. W. Coad, A. Gholamifard, N. Nazari & A. Teimory, 2010. Annotated checklist of the freshwater fishes of Iran. Zoosystematica Rossica 19: 361–386.

    Article  Google Scholar 

  • Esmaeili, H. R., W. C. Brian, H. R. Mehraban, M. Masoudi, R. Khaefi, K. Abbasi, H. Mostafavi & S. Vatandoust, 2014. An updated checklist of fishes of the Caspian Sea basin of Iran with a note on their zoogeography. Iranian Journal of Ichthyology 1: 152–184.

    Google Scholar 

  • Esmaeili, H. R., H. Mehraban, K. Abbasi, Y. Keivany & W. C. Brian, 2017. Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status. Iranian Journal of Ichthyology 4: 1–114.

    Google Scholar 

  • Esmaeili, H. R., G. Sayyadzadeh, S. Eagderi & K. Abbasi, 2018. Checklist of freshwater fishes of Iran. FishTaxa 3: 1–95.

    Google Scholar 

  • Freyhof, J., 2012. Diversity and distribution of freshwater gobies from the Mediterranean, the Black and Caspian Seas. In: Patzner, R. (ed), The Biology of Gobies. CRC Press, Boca Raton, pp 279–288.

    Google Scholar 

  • Freyhof, J. & A. M. Naseka, 2007. Proterorhinus tataricus, a new tubenose goby from Crimea, Ukraine (Teleostei: Gobiidae). Ichthyological Exploration of Freshwaters 18: 325–334.

    Google Scholar 

  • Fricke, R., W. N. Eschmeyer & R. Van der Laan, 2020. Eschmeyer’s Catalog of Fishes: Genera, Species, References [available on internet at http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp]. Accessed 2 Feb 2020.

  • Ganjali, Z., H. R. Esmaeili, F. Zarei, G. Sayyadzadeh, S. Eagderi & R. E. Gozlan, 2020. West Asian colonisation of topmouth gudgeon, Pseudorasbora parva (Teleostei: Gobionidae): Genetic admixture at the crossroad of Europe and East Asia. Freshwater Biology 66: 1–17.

    Google Scholar 

  • Geiger, M. F., F. Herder, M. T. Monaghan, V. Almada, R. Barbieri, M. Bariche, P. Berrebi, J. Bohlen, M. Casal‐Lopez, G. B. Delmastro, G. P. J. Denys, A. Dettai, I. Doadrio, E. Kalogianni, H. Kärst, M. Kottelat, M. Kovačić, M. Laporte, M. Lorenzoni, Z. Marčić, M. Özuluğ, A. Perdices, S. Perea, H. Persat, S. Porcelotti, C. Puzzi, J. Robalo, R. Šanda, M. Schneider, V. Šlechtová, M. Stoumboudi, S. Walter & J. Freyhof, 2014. Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes. Molecular Ecology Resources 14: 1210–1221.

    Article  CAS  PubMed  Google Scholar 

  • Goldman, N., J. P. Anderson & A. G. Rodrigo, 2000. Likelihood-based tests of topologies in phylogenetics. Systematic Biology 49: 652–670.

    Article  CAS  PubMed  Google Scholar 

  • Hall, T. A., 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

    CAS  Google Scholar 

  • Hart, M. W. & J. Sunday, 2007. Things fall apart: Biological species form unconnected parsimony networks. Biology Letters 3: 509–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto, S., I. Koizumi, K. Takai & S. Higashi, 2014. Different habitat salinity between genetically divergent groups of a worm-like goby Luciogobius guttatus: An indication of cryptic species. Environmental Biology of Fishes 97: 1169–1177.

    Article  Google Scholar 

  • Iljin, B. S., 1927. A guide to the gobies (family Gobiidae) of the Azov and Black Seas. Trudy Azovo-Chernomorsky Nauchno Ekspeditsii 2: 128–143.

    Google Scholar 

  • Iljin, B. S., 1928. Two new genera and a new species of Gobiidae from the Caspian Sea. Reports of the Astrakhan Scientific Fishery Station 6: 1–14.

    Google Scholar 

  • Iljin, B. S., 1930. Le Système des Gobiidés. Ministerio de Fomento. Instituto Español de Oceanografía.

    Google Scholar 

  • Iljin, B. S., 1956. Remarks and corrections to suborder Gobioidei in the book of L.S. Berg “Freshwater fishes of the USSR and neighbouring countries”, edit. 4, 1948–1949. Voprosy Ikhtyologii 7: 85–192.

    Google Scholar 

  • Japoshvili, B., T. Lipinskaya, H. Gajduchenko, A. Sinchuk, A. Bikashvili & L. Mumladze, 2020. First DNA-based records of new alien freshwater species in the Republic of Georgia. Acta Zoologica Bulgarica 72: 545–551.

    Google Scholar 

  • Jouladeh-Roudbar, A., H. R. Ghanavi & I. Doadrio, 2020. Ichthyofauna from Iranian freshwater: Annotated checklist, diagnosis, taxonomy, distribution and conservation assessment. Zoological Studies 59: 21.

    Google Scholar 

  • Kapli, P., S. Lutteropp, J. Zhang, K. Kobert, P. Pavlidis, A. Stamatakis & T. Flouri, (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov Chain Monte Carlo. Bioinformatics 33: 1630–1638.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karimpour, M., M. M. Harlioglu, A. A. Khanipour, S. Abdolmalaki & Ö. Aksu, 2013. Present status of fisheries in Iran. Journal of FisheriesSciences.com 7: 161–177.

    Google Scholar 

  • Kartavtsev, Y. P., 2011. Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and genetics of speciation in animals. Mitochondrial DNA 22: 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Keskİn, E. & H. H. Atar, 2013. DNA barcoding commercially important fish species of Turkey. Molecular Ecology Resources 13: 788–797.

    Article  PubMed  Google Scholar 

  • Kessler, K. F., 1877. Fishes distributed and found in the Aral-Caspian-Pontic ichthyological region. Trudy Aralo-Kaspiiskoi Ekspeditsii 4: 1–360.

    Google Scholar 

  • Knebelsberger, T., A. R. Dunz, D. Neumann & M. F. Geiger, 2015. Molecular diversity of Germany’s freshwater fishes and lampreys assessed by DNA barcoding. Molecular Ecology Resources 15: 562–572.

    Article  CAS  PubMed  Google Scholar 

  • Kotlik, P., S. Markova, L. Choleva, N. G. Bogutskaya, F. G. Ekmekci & P. P. Ivanova, (2008). Divergence with gene flow between Ponto‐Caspian refugia in an anadromous cyprinid Rutilus frisii revealed by multiple gene phylogeography. Molecular Ecology 17: 1076–1088.

    Article  CAS  PubMed  Google Scholar 

  • Kottelat, M., 1997. European freshwater fishes. An heuristic checklist of the freshwater fishes of Europe (exclusive of former USSR), with an introduction for non-systematists and comments on nomenclature and conservation. Biologia (Bratislava) 52: 1–271.

    Google Scholar 

  • Kottelat, M. & J. Freyhof, 2007. Handbook of European Freshwater Fishes. Kottelat, Cornol and Freyhof, Berlin.

  • Krijgsman, W., M. Stoica, I. Vasiliev & V. V. Popov, 2010. Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth and Planetary Science Letters 290: 183–191.

    Article  CAS  Google Scholar 

  • Krijgsman, W., A. Tesakov, T. Yanina, S. Lazarev, G. Danukalova, C. G. C. Van Baak, J. Agustí, M. C. Alçiçek, E. Aliyeva & D. Bista, 2019. Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution. Earth-Science Reviews 188: 1–40.

    Article  Google Scholar 

  • Kuljanishvili, T., G. Epitashvili, J. Freyhof, B. Japoshvili, L. Kalous, B. Levin, N. Mustafayev, S. Ibrahimov, S. Pipoyan & L. Mumladze, 2020. Checklist of the freshwater fishes of Armenia, Azerbaijan and Georgia. Journal of Applied Ichthyology 36: 501–514.

    Article  Google Scholar 

  • Kumar, S., G. Stecher & K. Tamura, 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh, J. W. & D. Bryant, 2015. Popart: Full‐feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116.

    Article  Google Scholar 

  • Lima, D., J. E. P. Freitas, M. E. Araujo & A. M. Solé-Cava, 2005. Genetic detection of cryptic species in the frillfin goby Bathygobius soporator. Journal of Experimental Marine Biology and Ecology 320: 211–223.

    Article  Google Scholar 

  • McCraney, W. T., C. E. Thacker & M. E. Alfaro, 2020. Supermatrix phylogeny resolves goby lineages and reveals unstable root of Gobiaria. Molecular Phylogenetics and Evolution 151: 106862.

    Article  PubMed  Google Scholar 

  • Medvedev, D. A., P. A. Sorokin, V. P. Vasil’ev, N. V. Chernova & E. D. Vasil’eva, 2013. Reconstruction of phylogenetic relations of Ponto-Caspian gobies (Gobiidae, Perciformes) based on mitochondrial genome variation and some problems of their taxonomy. Journal of Ichthyology 53: 702–712.

    Article  Google Scholar 

  • Miller, P. J., 2003. The Freshwater Fishes of Europe, Vol. 8/I Mugilidae, Atherinidae, Atherinopsidae, Blenniidae, Odontobutidae, Gobiidae 1. AULA-Verlag GmbH Wiebelsheim, Verlag fur Wissenschaft und Forschung.

  • Miller, P. J., 2004a. Chasar Vasil’eva, 1996. In Miller, P. J. (ed), The Freshwater Fishes of Europe Vol. 8/II Gobiidae 2. AULA-Verlag GmbH Wiebelsheim, Verlag fur Wissenschaft und Forschung: 94–96.

  • Miller, P. J., 2004b. The Freshwater Fishes of Europe Vol. 8/II Gobiidae 2. AULA-Verlag GmbH Wiebelsheim, Verlag fur Wissenschaft und Forschung.

  • Miller, P. J., 2004c. Knipowitschia Iljin, 1927. In Miller, P. J. (ed), The Freshwater Fishes of Europe Vol. 8/II Gobiidae 2. AULA-Verlag GmbH Wiebelsheim, Verlag fur Wissenschaft und Forschung: 331–337.

  • Mizuno, N., 2001. Rhinogobius. In: Kawanabe, H., Mizuno N. & K. Hosoya (eds), Fresh Water Fishes of Japan. Yama-Kei Publishers, Tokyo, p 584.

    Google Scholar 

  • Moritz, C., 1994. Applications of mitochondrial DNA analysis in conservation: A critical review. Molecular Ecology 3: 401–411.

    Article  CAS  Google Scholar 

  • Mousavi-Sabet, H., M. Amouei, M. Salehi, A. Salehi-Farsani & A. Heidari, 2019. Range extension and a new locality for the lake goby Rhinogobius lindbergi Berg, 1933 in the Upper Tigris River drainage, Iran. FishTaxa 4: 9–12.

    Google Scholar 

  • Naseka, A. M. & N. G. Bogutskaya, 2009. Fishes of the Caspian Sea: Zoogeography and updated check-list. Zoosystematica Rossica 18: 295–317.

    Article  Google Scholar 

  • Neilson, M. E. & C. A. Stepien, 2009a. Escape from the Ponto-Caspian: Evolution and biogeography of an endemic goby species flock (Benthophilinae: Gobiidae: Teleostei). Molecular Phylogenetics and Evolution 52: 84–102.

    Article  CAS  PubMed  Google Scholar 

  • Neilson, M. E. & C. A. Stepien, 2009b. Evolution and phylogeography of the tubenose goby genus Proterorhinus (Gobiidae: Teleostei): Evidence for new cryptic species. Biological Journal of the Linnean Society 96: 664–684.

    Article  Google Scholar 

  • Neilson, M. E. & C. A. Stepien, (2011). Historic speciation and recent colonization of Eurasian monkey gobies (Neogobius fluviatilis and N. pallasi) revealed by DNA sequences, microsatellites, and morphology. Diversity and Distributions 17: 688–702.

    Article  Google Scholar 

  • Nobuaki, K., 2012. Japan II. Diplomatic and commercial relations with Iran. Encyclopædia Iranica 14: 547–556.

    Google Scholar 

  • Pinchuk, V. I. & D. B. Ragimov, 1985. The lateral line system in two endemic species of gobies of the Caspian Sea. Zoologichesky Zhurnal 64: 562–567.

    Google Scholar 

  • Pinchuk, V. I., E. D. Vasil’eva, V. P. Vasil’ev & P. J. Miller, 2004. Proterorhinus marmoratus (Pallas, 1814). In Miller, P. J. (ed), The Freshwater Fishes of Europe Vol. 8/II Gobiidae 2. AULA-Verlag GmbH Wiebelsheim, Verlag fur Wissenschaft und Forschung: 72–93.

  • Pollard, D. A., V. N. Iyer, A. M. Moses & M. B. Eisen, 2006. Widespread discordance of gene trees with species tree in Drosophila: Evidence for incomplete lineage sorting. PLoS Genetics 2: e173.

    Article  PubMed  PubMed Central  Google Scholar 

  • Popov, S. V., F. Rögl, A. Y. Rozanov, F. F. Steininger, I. G. Shcherba & M. Kovac, 2004. Lithological-paleogeographic maps of Paratethys-10 maps Late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg 250: 1–46.

    Google Scholar 

  • Puillandre, N., A. Lambert, S. Brouillet & G. Achaz, 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.

    Article  CAS  PubMed  Google Scholar 

  • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna [available on internet at http://www.R-project.org].

  • Radde, G., 1899. Die Sammlungen des Kaukasischen Museums. Band I. Zoologie, von Dr. Gustav Radde, Tiflis.

  • Ragimov, D. B., 1967. On the systematics of fishes belonging to the genus Gobius in the Caspian Sea. In Khalilov, R. A. (ed), Biological Productivity of the Kurinsk-Caspian Fishing Region. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR: 252–277.

  • Rambaut, A. & A. J. Drummond, 2012. FigTree version 1.4.0. Institute of Evolutionary Biology, University of Edinburgh [available on internet at http://tree.bio.ed.ac.uk/]. Accessed 2 Feb 2020.

  • Rambaut, A., M. A. Suchard, D. Xie & A. J. Drummond, 2014. Tracer v1.6 [available on internet at http://beast.bio.ed.ac.uk/Tracer]. Accessed 2 Feb 2020.

  • Reid, D. F. & M. I. Orlova, 2002. Geological and evolutionary underpinnings for the success of Ponto-Caspian species invasions in the Baltic Sea and North American Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1144–1158.

    Article  Google Scholar 

  • Reid, N. M. & B. C. Carstens, 2012. Phylogenetic estimation error can decrease the accuracy of species delimitation: A Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology 12: 196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rögl, F., 1999. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica 50: 339–349.

    Google Scholar 

  • Ronquist, F., M. Teslenko, P. Van Der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross, L. G. & B. Ross, 2009. Anaesthetic and Sedative Techniques for Aquatic Animals. Blackwell Publishing Ltd., Oxford.

    Google Scholar 

  • Rubinoff, D. & B. S. Holland, 2005. Between two extremes: Mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Systematic Biology 54: 952–961.

    Article  PubMed  Google Scholar 

  • Rückert-Ülkümen, N., 2006. Otolithen aus dem Mio-Pliozän von Yalova bei Istanbul, Türkei. Neues Jahrbuch für Geologie und Paläontologie-Monatshefte 2006: 577–594.

    Article  Google Scholar 

  • Sadeghi, R., H. R. Esmaeili, F. Zarei, A. Esmaeili & K. Abbasi, 2019. The taxonomic status of an introduced freshwater goby of the genus Rhinogobius to Iran (Teleostei: Gobiidae). Zoology in the Middle East 65: 51–58.

    Article  Google Scholar 

  • Sakai, H., K. Ikoma, S. V. Frolov, Y. Yamazaki, H. Takahashi & H. Ida, 2000. Morphological features of a Russian freshwater goby, Rhinogobius lindbergi (Pisces: Gobiidae), and its genetic relationships to Japanese species. Biogeography 2: 51–61.

    Google Scholar 

  • Sal'nikov, V. B., 1995. Possible changes in the composition of the ichthyofauna after completion of the Karakum Canal in Turkmenistan. Journal of Ichthyology 35: 108–121.

    Google Scholar 

  • Sal’nikov, V. B., 1998. Anthropogenic migration of fish in Turkmenistan. Journal of Ichthyology 38: 591–602.

    Google Scholar 

  • Schwarz, G., 1978. Estimating the dimension of a model. The Annals of Statistics 6: 461–464.

    Article  Google Scholar 

  • Schwarzhans, W., H. Ahnelt, G. Carnevale, S. Japundžić, K. Bradić & A. Bratishko, 2017. Otoliths in situ from Sarmatian (Middle Miocene) fishes of the Paratethys. Part III: Tales from the cradle of the Ponto-Caspian gobies. Swiss Journal of Palaeontology 136: 45–92.

    Article  Google Scholar 

  • Shakirova, F. M. & A. I. Sukhanova, 1994. Iktiofauna Turkmenistana (sostav i rasprostranenie) [Ichthyofauna of Turkmenistan (composition and distribution)]. Izvestiya Akademii Nauk Turkmenistana, Seriya Biologicheskikh Nauk 3: 35–45.

    Google Scholar 

  • Shen, Y., L. Guan, D. Wang & X. Gan, 2016. DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River. Ecology and Evolution 6: 2702–2713.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimodaira, H. & M. Hasegawa, 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114–1116.

    Article  CAS  Google Scholar 

  • Shimodaira, H. & M. Hasegawa, 2001. CONSEL: For assessing the confidence of phylogenetic tree selection. Bioinformatics 17: 1246–1247.

    Article  CAS  PubMed  Google Scholar 

  • Sorokin, P. A., D. A. Medvedev, V. P. Vasil’ev & E. D. Vasil’eva, 2011. Further studies of mitochondrial genome variability in Ponto-Caspian Proterorhinus species (Actinopterygii: Perciformes: Gobiidae) and their taxonomic implications. Acta Ichthyologica et Piscatoria 41: 95–104.

    Article  Google Scholar 

  • Stamatakis, A., 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

    Article  CAS  PubMed  Google Scholar 

  • Stepien, C. A. & M. A. Tumeo, 2006. Invasion genetics of Ponto-Caspian gobies in the Great Lakes: A ‘cryptic’ species, absence of founder effects, and comparative risk analysis. Biological Invasions 8: 61–78.

    Article  Google Scholar 

  • Suzuki, T. & I. S. Chen, 2011. Redescriptions of three species of genus Rhinogobius (Perciformes, Gobiidae) described by Dr. Shigeho Tanaka. Bulletin of the Osaka Museum of Natural History 65: 9–24.

    Google Scholar 

  • Suzuki, T., I.-S. Chen & H. Senou, 2011. A new species of Rhinogobius Gill, 1859 (Teleostei: Gobiidae) from the Bonin Islands, Japan. Journal of Marine Science and Technology 19: 693–701.

    Article  Google Scholar 

  • Suzuki, T., N. Oseko, S. Kimura & K. Shibukawa, 2020. Two new species of torrential gobies of the genus Rhinogobius from the Ryukyu Islands, Japan. Bulletin of the Kanagawa Prefectural Museum Natural Science 2020: 7–28.

    Google Scholar 

  • Suzuki, T., K. Shibukawa, H. Senou & I.-S. Chen, 2016. Redescription of Rhinogobius similis Gill, 1859 (Gobiidae: Gobionellinae), the type species of the genus Rhinogobius Gill, 1859, with designation of the neotype. Ichthyological Research 63: 227–238.

    Article  Google Scholar 

  • Svetovidov, A. N., 1964. Fishes of the Black Sea. Nauka, Moscow.

    Book  Google Scholar 

  • Svitoch, A. A., 2012. The Caspian Sea shelf during the Pleistocene regressive epochs. Oceanology 52: 526–539.

    Article  Google Scholar 

  • Thacker, C. E. & D. M. Roje, 2011. Phylogeny of Gobiidae and identification of gobiid lineages. Systematics and Biodiversity 9: 329–347.

    Article  Google Scholar 

  • Thacker, C. E., C. Gkenas, A. Triantafyllidis, S. Malavasi & I. Leonardos, 2019. Phylogeny, systematics and biogeography of the European sand gobies (Gobiiformes: Gobionellidae). Zoological Journal of the Linnean Society 185: 212–225.

    Article  Google Scholar 

  • Thalinger, B., J. Oehm, H. Mayr, A. Obwexer, C. Zeisler & M. Traugott, 2016. Molecular prey identification in Central European piscivores. Molecular Ecology Resources 16: 123–137.

    Article  CAS  PubMed  Google Scholar 

  • Van Baak, C. G. C., M. Stoica, A. Grothe, E. Aliyeva & W. Krijgsman, 2016. Mediterranean-Paratethys connectivity during the Messinian salinity crisis: The Pontian of Azerbaijan. Global and Planetary Change 141: 63–81.

    Article  Google Scholar 

  • Vasil’eva, E. D., 1996. Skull morphology of the deep-sea goby Gobius bathybius Kessler in connection with its systematic position within the genus Gobius sensu lato (Gobiidae). Voprosy Ikhtyologii 36: 448–453.

    Google Scholar 

  • Vasil’eva, E. D. & T. I. Kuga, 2008. Gobies of the genus Rhinogobius (Gobiidae) of Primorye and water bodies of Central Asia and Kazakhstan: II. Comparative craniological analysis of gobies introduced to Central Asia. Journal of Ichthyology 48: 29–36.

    Article  Google Scholar 

  • Vasil’eva, E. D., H. Mousavi-Sabet & V. P. Vasil’ev, 2015. Ponticola iranicus sp. nov. (Actinopterygii: Perciformes: Gobiidae) from the Caspian Sea basin. Acta Ichthyologica et Piscatoria 45: 189–197.

    Article  Google Scholar 

  • Vasil’eva, E. D., W. W. Schwarzhans, D. A. Medvedev & V. P. Vasil’ev, 2016. Cryptic species of Ponto-Caspian bighead goby of the genus Ponticola (Gobiidae). Journal of Ichthyology 56: 1–18.

    Article  Google Scholar 

  • Victor, B. C., 2010. The Redcheek Paradox: The mismatch between genetic and phenotypic divergence among deeply-divided mtDNA lineages in a coral-reef goby, with the description of two new cryptic species from the Caribbean Sea. Journal of the Ocean Science Foundation 3: 1–16.

    Google Scholar 

  • Victor, B. C., 2014. Three new endemic cryptic species revealed by DNA barcoding of the gobies of the Cayman Islands (Teleostei: Gobiidae). Journal of the Ocean Science Foundation 12: 25–60.

    Google Scholar 

  • Ward, R. D., 2009. DNA barcode divergence among species and genera of birds and fishes. Molecular Ecology Resources 9: 1077–1085.

    Article  CAS  PubMed  Google Scholar 

  • Ward, R. D., T. S. Zemlak, B. H. Innes, P. R. Last & P. D. N. Hebert, 2005. DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 1847–1857.

    Article  CAS  Google Scholar 

  • Welcomme, R. L., 1981. Register of International Transfers of Inland Fish Species. FAO, Rome.

    Google Scholar 

  • Welcomme, R. L., 1988. International Introductions of Inland Aquatic Species. FAO, Rome.

    Google Scholar 

  • Xia, J.-H., H.-L. Wu, C.-H. Li, Y.-Q. Wu & S.-H. Liu, 2018. A new species of Rhinogobius (Pisces: Gobiidae), with analyses of its DNA barcode. Zootaxa 4407: 553–562.

    Article  PubMed  Google Scholar 

  • Xia, X., 2018. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution 35: 1550–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, X., Z. Xie, M. Salemi, L. Chen & Y. Wang, 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki, Y. Y., M. Nishida, T. Suzuki, T. Mukai & K. Watanabe, 2015. Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan, inferred from multiple nuclear gene sequences. Molecular Phylogenetics and Evolution 90: 20–33.

    Article  CAS  PubMed  Google Scholar 

  • Zaitsev, Y. & V. Mamaev, 1997. Marine Biological Diversity in the Black Sea. United Nations Publications, New York

    Google Scholar 

  • Zhang, J., P. Kapli, P. Pavlidis & A. Stamatakis, 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Marcelo Kovačić (Natural History Museum Rijeka), Dirk Erpenbeck (Ludwig-Maximilians-Universität München), R. Sadeghi, Y. Bakhshi, H. Mehraban, M. Masoudi, and staff of the Anzali’s Inland Waters Aquaculture Research Center (IFSRI) for helping with fish collection in southern Caspian Sea basin. Our thanks are also due to Daisuke Kageyama (NARO, Japan) and Mahmood Soofi (University of Aberdeen) for sending us some old publications, and to M. Neilson (U.S. Geological Survey) and C. E. Thacker (Natural History Museum of Los Angeles County) for providing additional information on some archived materials in the GenBank repository. We thank two anonymous reviewers for their constructive remarks, which greatly enhanced the quality of manuscript. The research work was funded by Shiraz University (SU-9630190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Esmaeili.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors. All necessary permits for sampling have been obtained by the authors from the Iranian authorities. The research work was approved by Ethics Committee of Biology Department, Shiraz University (SU-9630190).

Additional information

Handling editor: Christian Sturmbauer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 2166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, F., Esmaeili, H.R., Schliewen, U.K. et al. Mitochondrial phylogeny, diversity, and ichthyogeography of gobies (Teleostei: Gobiidae) from the oldest and deepest Caspian sub-basin and tracing source and spread pattern of an introduced Rhinogobius species at the tricontinental crossroad. Hydrobiologia 848, 1267–1293 (2021). https://doi.org/10.1007/s10750-021-04521-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04521-0

Keywords

Navigation