Skip to main content
Log in

DNA barcoding the Lake Edward basin: high taxonomic coverage of a tropical freshwater ichthyofauna

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We present an extensive DNA barcoding study of the fish species of the Lake Edward system, including information on intraspecific variation. The DNA barcode gene, cytochrome c oxidase I (COI), failed to discriminate the 35 species of the genus Haplochromis analysed. For the non-Haplochromis species, the reference library had a near complete coverage of 91.2%, with 31 out of the 34 known species of the system sequenced. With the recent morphology-based review of the ichthyofauna of the system as a backbone, the DNA barcoding library proved to be very effective for future species identifications. High identification successes were obtained based on Best Match (98.2%), Best Close Match (97.9%), and All Species Barcode (95.0%) criteria. Surprisingly, Laciris pelagicus and Micropanchax vitschumbaensis, two morphologically distinct species, had very similar and even identical COI haplotypes, whilst in Enteromius the existence of possible cryptic species was revealed. Few species occurring in the Lake Edward system were already represented in the global database Genbank. For some widespread species, regional genetic differences were found, highlighting the value of basin-specific information in reference databases. The provided reference library of DNA barcodes is a valuable tool for future conservation actions, which is certainly relevant in a system where the fisheries are under pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The COI sequences used for this study are openly available in Genbank, GenBank accessions MT523142 – MT52383; MT250998—MT251134 (published in Maetens et al., 2020), and MZ081460-MZ081545 (published in Diederickx et al., 2021).DNA sequence assemblies: upon request. A BOLD project, i.e. a library consisting of voucher ID, collection numbers, photographs, and sequence data, is available for the data within this article [HIPEB]. Morphological identifications and sampling localities are available in Supplementary Information.

References

  • Ali, F. S., M. Ismail & W. Aly, 2020. DNA barcoding to characterize biodiversity of freshwater fishes of Egypt. Molecular Biology Reports 47: 5865–5877.

    CAS  PubMed  Google Scholar 

  • April, J., R. L. Mayden, R. H. Hanner & L. Bernatchez, 2011. Genetic calibration of species diversity among North America’s freshwater fishes. Proceedings of the National Academy of Sciences 108: 10602–10607.

    CAS  Google Scholar 

  • Aquilino, S. V., J. M. Tango, I. K. Fontanilla, R. C. Pagulayan, Z. U. Basiao, P. S. Ong & J. P. Quilang, 2011. DNA barcoding of the ichthyofauna of Taal Lake, Philippines. Molecular Ecology Resources 11: 612–619.

    CAS  PubMed  Google Scholar 

  • Aquino, L. M. G., J. M. Tango, R. J. C. Canoy, I. K. C. Fontanilla, Z. U. Basiao, P. S. Ong & J. P. Quilang, 2011. DNA barcoding of fishes of Laguna de Bay, Philippines. Mitochondrial DNA 22: 143–153.

    CAS  PubMed  Google Scholar 

  • Bagley, J. C., P. P. U. de Aquino, M. F. Breitman, F. Langeani & G. R. Colli, 2019. DNA barcode and minibarcode identification of freshwater fishes from Cerrado headwater streams in Central Brazil. Journal of Fish Biology 95: 1046–1060.

    CAS  PubMed  Google Scholar 

  • Banyankimbona, G., E. Vreven & J. Snoeks, 2013. A revision of the genus Astatoreochromis (Teleostei, Cichlidae), East-Africa. European Journal of Taxonomy 39: 1–21.

    Google Scholar 

  • Balole-Bwami, E., J. C. Mumbere, J. Matunguru, D. Kujirakwinja, P. Shamavu, E. Muhindo, I. R. Tchouamp, B. Michel & J.-C. Micha, 2017. Production and impacts of fishing on Lake Edward in The Democratic Republic of the Congo (text in French). Tropicultura 36: 539–552.

    Google Scholar 

  • Barman, A. S., M. Singh & P. K. Pandey, 2017. DNA barcoding and genetic diversity analyses of fishes of Kaladan River of Indo-Myanmar biodiversity hotspot. Mitochondrial DNA Part A 29: 367–378.

    Google Scholar 

  • Barman, A. S., M. Singh, S. K. Singh, H. Saha, Y. J. Singh, M. Laishram & P. K. Pandey, 2018. DNA barcoding of freshwater fishes of Indo-Myanmar biodiversity hotspot. Scientific Reports 8: 8579.

    PubMed  PubMed Central  Google Scholar 

  • Beadle, L. C., 1932. Scientific results of the Cambridge Expedition to the East African Lakes, 1930-1.-4. The waters of some East African Lakes in relation to their fauna and flora. Zoological Journal of the Linnean Society 38: 157–211.

    Google Scholar 

  • Berbel-Filho, W. M., T. P. A. Ramos, U. P. Jacobina, D. J. G. Maia, R. A. Torres & S. M. A. Lima, 2018. Updated checklist and DNA barcode-based species delimitations reveal taxonomic uncertainties among freshwater fishes from the mid-north-eastern Caatinga ecoregion, north-eastern Brazil. Journal of Fish Biology 93: 311–323.

    PubMed  Google Scholar 

  • Bezault, E., P. Balaresque, A. Toguyeni, Y. Fermon, H. Araki, J.-F Baroiller & X. Rognon, 2011. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa. BMC Genetics 12.

  • Bragança, P. H. & W. J. Costa, 2019. Multigene fossil-calibrated analysis of the African lampeyes (Cyprinodontoidei: Procatopodidae) reveals an early Oligocene origin and Neogene diversification driven by palaeogeographic and palaeoclimatic events. Organisms, Diversity and Evolution 19: 303–320.

    Google Scholar 

  • Breman, F. C., S. Loix, K. Jordaens, J. Snoeks & M. Van Steenberge, 2016. Testing the potential of DNA barcoding in vertebrate radiations: the case of the littoral cichlids (Pisces, Perciformes, Cichlidae) from Lake Tanganyika. Molecular Ecology Resources 16: 1455–1464.

    CAS  PubMed  Google Scholar 

  • Chakraborty, M. & S. K. Ghosh, 2014. An assessment of the DNA barcodes of Indian freshwater fishes. Gene 537: 20–28.

    CAS  PubMed  Google Scholar 

  • Chen, W., X. Ma, Y. Shen, Y. Mao & S. He, 2015. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding. Scientific Reports 5: 17437.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, R. A. & R. H. Cruickshank, 2013. The seven deadly sins of DNA barcoding. Molecular Ecology Resources 13: 969–975.

    CAS  PubMed  Google Scholar 

  • Costa, F. O. & G. R. Carvalho, 2007. The Barcode of Life Initiative: synopsis and prospective societal impacts of DNA barcoding of fish. Genomics, Society and Policy 3: 29.

    Google Scholar 

  • Dahruddin, H., A. Hutama, F. Busson, S. Sauri, R. Hanner, P. Keith & N. Hubert, 2017. Revisiting the ichthyodiversity of Java and Bali through DNA barcodes: taxonomic coverage, identification accuracy, cryptic diversity and identification of exotic species. Molecular Ecology Resources 17: 288–299.

    CAS  PubMed  Google Scholar 

  • de Carvalho, D. C., D. A. Oliveira, P. S. Pompeu, C. G. Leal, C. Oliveira & R. Hanner, 2011. Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River basin. Mitochondrial DNA 22: 80–86.

    PubMed  Google Scholar 

  • Decru, E., T. Moelants, K. De Gelas, E. Vreven, E. Verheyen & J. Snoeks, 2016. Taxonomic challenges in freshwater fishes: A mismatch between morphology and DNA barcoding in fish of the north-eastern part of the Congo basin. Molecular Ecology Resources 16: 342–352.

    CAS  PubMed  Google Scholar 

  • Decru, E., E. Vreven, K. De Gelas, E. Verheyen & J. Snoeks, 2017. Species richness in the African pike genus Hepsetus: a perfect match between genetics and morphology. Journal of Fish Biology 91: 617–627.

    CAS  PubMed  Google Scholar 

  • Decru, E., N. Vranken, P. H. N. Bragança, J. Snoeks & M. Van Steenberge, 2020. Where ichthyofaunal provinces meet: the fish fauna of the Lake Edward system, East Africa. Journal of Fish Biology 96: 1186–1201.

    PubMed  Google Scholar 

  • DeSalle, R. & P. Goldstein, 2019. Review and interpretation of trends in DNA barcoding. Frontiers in Ecology and Evolution 7: 302.

    Google Scholar 

  • Díaz, J., G. V. Villanova, F. Brancolini, F. del Pazo, V. M. Posner, A. Grimberg & S. E. Arranz, 2016. First DNA barcode reference library for the identification of South American freshwater fish from the lower Paraná river. PLoS ONE 11: e0157419.

    PubMed  PubMed Central  Google Scholar 

  • Diedericks, G., H. Maetens, M. Van Steenberge & J. Snoeks, J. 2021. Testing for hybridization between Nile tilapia (Oreochromis leucostictus) and blue spotted tilapia (Oreochromis leucostictus) in the Lake Edward system. Journal of Great Lakes research. Online preview.

  • Ebach, M. C. & C. Holdrege, 2005. DNA barcoding is no substitute for taxonomy. Nature 434: 697.

    CAS  PubMed  Google Scholar 

  • Eccles, D. H., D. Tweddle & P. Skelton, 2011. Eight new species in the dwarf catfish genus Zaireichthys (Siluriformes: Amphiliidae). Smithsonian Bulletin 13: 3–28.

    Google Scholar 

  • Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epitashvili, G., M. Geiger, J. J. Astrin, F. Herder, B. Japoshvili & L. Mumladze, 2020. Towards retrieving the Promethean treasure: a first molecular assessment of the freshwater fish diversity of Georgia. Biodiversity Data Journal 8: 57862.

    Google Scholar 

  • Geiger, M. F., F. Herder, M. T. Monaghan, V. Almada, R. Barbieri, M. Bariche, P. Berrebi, J. Bohlen, M. Casal-Lopez, G. B. Delmastro, G. P. J. Denys, A. Dettai, I. Doadrio, E. Kalogianni, H. Kärst, M. Kottelat, M. Kovačić, M. Laporte, M. Lorenzoni, Z. Marčić, M. Özuluğ, A. Perdices, S. Perea, H. Persat, S. Porcelotti, C. Puzzi, J. Robalo, R. Šanda, M. Schneider, V. Šlechtová, M. Stoumboudi, S. Walter & J. Freyhof, 2014. Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes. Molecular Ecology Resources 14: 1210–1221.

    CAS  PubMed  Google Scholar 

  • Goldstein, P. Z. & R. DeSalle, 2019. Review and interpretation of trends in DNA barcoding. Frontiers in Ecology and Evolution 7: 302.

    Google Scholar 

  • Gomes, L. C., T. C. Pessali, N. G. Sales, P. S. Pompeu & D. C. Carvalho, 2015. Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin. Genetica 143: 581–588.

    PubMed  Google Scholar 

  • Guimarães, K. L. A., M. P. A. de Sousa, F. R. V. Ribeiro, J. I. R. Porto & L. R. R. Rodrigues, 2018. DNA barcoding of fish fauna from low order streams of Tapajós River basin. PLoS ONE 13: E0209430.

    PubMed  PubMed Central  Google Scholar 

  • Hardy, C. M., M. Adams, D. R. Jerry, M. J. Morgan & D. M. Hartley, 2011. DNA barcoding to support conservation: species identification, genetic structure and biogeography of fishes in the Murray – Darling River Basin, Australia. Marine and Freshwater Research 62: 887–901.

    CAS  Google Scholar 

  • Hajibabaei, M., D. H. Janzen, J. M. Burns, W. Hallwachs & P. D. N. Hebert, 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the USA 103: 968–971.

    PubMed  PubMed Central  Google Scholar 

  • Hebert, P. D. N., S. Ratnasingham & J. R. deWaard, 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B-Biological Sciences 270: S96–S99.

    CAS  Google Scholar 

  • Hubert, N., R. Hanner, E. Holm, N. E. Mandrak, E. Taylor, M. Burridge, D. Watkinson, P. Dumont, A. Curry, P. Bentzen, J. Zhang, J. April & L. Bernatchez, 2008. Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3: e2490.

    PubMed  PubMed Central  Google Scholar 

  • Ivanova, N. V., T. S. Zemlak, R. H. Hanner & P. D. N. Hebert, 2007. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes 7(4): 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x.

    Article  CAS  Google Scholar 

  • Iyiola, O. A., L. M. Nneji, M. K. Mustapha, C. G. Nzeh, S. O. Oladipo, I. C. Nneji, A. O. Okeyoyin, C. D. Nwani, O. A. Ugwumba, A. A. A. Ugwumba, E. O. Faturoti, Y. Y. Wang, J. Chen, W. Z. Wang & A. C. Adeola, 2018. NA barcoding of economically important freshwater fish species from north-central Nigeria uncovers cryptic diversity. Ecology and Evolution 8: 6932–6951.

    PubMed  PubMed Central  Google Scholar 

  • Jorissen, M. W. P., T. Huyse, A. Pariselle, et al., 2020. Historical museum collections help detect parasite species jumps after tilapia introductions in the Congo Basin. Biological Invasions 22: 2825–2844.

    Google Scholar 

  • Khedkar, G. D., R. Jamdade, S. Naik, L. David & D. Haymer, 2014. DNA barcodes for the fishes of the Narmada, one of India’s longest rivers. PLoS ONE 9: 101460.

    Google Scholar 

  • Kide, N. G., A. Dunz, J.-F. Agnèse, J. Dilyte, A. Pariselle, C. Carneiro, E. Correia, J. C. Brito, L. O. Yarba, Y. Kone & J.-D. Durand, 2016. Cichlids of the Banc d’Arguin National Park, Mauritania: insight into the diversity of the genus Coptodon. Journal of Fish Biology 88: 1369–1393.

    CAS  PubMed  Google Scholar 

  • Kolding, J., P. van Zwieten, F. Marttin, S. Funge-Smith & F. Poulain, 2019. Freshwater small pelagic fish and fisheries in major African lakes and reservoirs in relation to food security and nutrition. FAO Fisheries and Aquaculture Technical Paper No. 642. FAO, Rome, Licence: CC BY-NC-SA 3.0 IGO.

  • Knebelsberger, T., A. R. Dunz, D. Neumann & M. F. Geiger, 2015. Molecular diversity of Germany’s freshwater fishes and lampreys assessed by DNA barcoding. Molecular Ecology Resources 15: 562–572.

    CAS  PubMed  Google Scholar 

  • Kumar, S., G. Stecher & K. Tamura, 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu, S., K. Chandra, K. Tyagi, A. Pakrashi & V. Kumar, 2019a. DNA barcoding of freshwater fishes from Brahmaputra River in Eastern Himalaya biodiversity hotspot. Mitochondrial DNA Part B 4: 2411–2419.

    PubMed  PubMed Central  Google Scholar 

  • Kundu, S., K. Tyagi, A. Pakrashi, V. Kumar, L. Kosygin, S. Rath, U. Das & K. Chandra, 2019b. DNA barcoding of freshwater fishes from the transboundary river of Indo-Bhutan: multiple clades and cryptic diversity. Mitochondrial DNA Part B 4: 2527–2532.

    PubMed  PubMed Central  Google Scholar 

  • Lakra, W. S., M. Singh, M. Goswami, A. Gopalakrishnan, K. K. Lal, V. Mohindra, U. K. Sarkar, P. P. Punia, K. V. Singh, J. P. Bhatt & S. Ayyappan, 2016. DNA barcoding Indian freshwater fishes. Mitochondrial DNA Part A 27: 4510–4517.

    CAS  Google Scholar 

  • Lara, A., J. L. Ponce de Leon, R. Rodriguez, D. Casane, G. Cote, L. Bernatchez & E. Garcia-Machado, 2010. DNA barcoding of Cuban freshwater fishes: evidence for cryptic species and taxonomic conflicts. Molecular Ecology Resources 10: 421–430.

    CAS  PubMed  Google Scholar 

  • Laskar, B. A., V. Kumar, S. Kundu, A. Darshan, K. Tyagi & K. Chandra, 2018. DNA barcoding of fishes from River Diphlu within Kaziranga National Park in northeast India. Mitochondrial DNA Part A: 1–9.

  • Loh, W. K. W., P. Bond, K. J. Ashton, D. T. Roberts & I. R. Tibbetts, 2014. DNA barcoding of freshwater fishes and the development of a quantitative qPCR assay for the species-specific detection and quantification of fish larvae from plankton samples. Journal of Fish Biology 85: 307–328.

    CAS  PubMed  Google Scholar 

  • Lowenstein, J. H., T. W. Osmundson, S. Becker, R. Hanner & M. L. J. Stiassny, 2011. Incorporating DNA barcodes into a multi-year inventory of the fishes of the hyperdiverse Lower Congo River, with a multi-gene performance assessment of the genus Labeo as a case study. Mitochondrial DNA 22: 52–70.

    CAS  PubMed  Google Scholar 

  • Lubala, E., J. C. Mumbere, J. M. Masirika, D. Kujirakwinja, P. Shamavu, E. Muhind & J. C. Micha, 2017. Production et impacts de la pêche dans la partie congolaise du Lac Edouard. Tropicultura 36: 539–552.

    Google Scholar 

  • Martin, P. & J. MacKay, 2004. Latitudinal variation in genetic divergence of populations and the potential for future speciation. Evolution 58: 938–945.

    PubMed  Google Scholar 

  • Maetens, H., M. Van Steenberge, J. Snoeks & E. Decru, 2020. Revalidation of Enteromius alberti and presence of Enteromius cf. mimus (Cypriniformes: Cyprinidae) in the Lake Edward system. East Africa. European Journal of Taxonomy 700: 1–28.

    Google Scholar 

  • Mbalassa, M., M. Nshombo, M. E. Kateyo, L. Chapman, J. Efitre & G. Bwanika, 2015. Identification of migratory and spawning habitats of Clarias gariepinus (Burchell, 1822) in Lake Edward-Ishasha River watershed, Albertine Rift Valley, East Africa. International Journal of Fisheries and Aquatic Studies 2: 128–138.

    Google Scholar 

  • Meier, R., S. Kwong, G. Vaidya & P. K. L. Ng, 2006. DNA Barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology 55: 715–728.

    PubMed  Google Scholar 

  • Meier, J. I., D. A. Marques, S. Mwaiko, C. E. Wagner, L. Excoffier & O. Seehausen, 2017. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nature Communications 8: 1.

    Google Scholar 

  • Meyer, A., T. D. Kocher, P. Basasibwaki & A. C. Wilson, 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347: 550–553.

    CAS  PubMed  Google Scholar 

  • Miller, S. E., A. Hausmann, W. Hallwachs & D. H. Janzen, 2016. Advancing taxonomy and bioinventories with DNA barcodes. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150339.

    Google Scholar 

  • Moritz, C. & C. Cicero, 2004. DNA barcoding: Promise and pitfalls. PLoS Biology 2: e354.

    PubMed  PubMed Central  Google Scholar 

  • Musinguzi, L., S. Bassa, V. Natugonza, M. Van Steenberge, W. Okello, J. Snoeks & R. Froese, 2021. Assessment of exploited fish species in the Lake Edward System, East Africa. Journal of Applied Ichthyology 37: 216–226.

    Google Scholar 

  • Nagl, S., H. Tichy, W. E. Mayer, J. Klein, N. Takezaki & N. Takahata, 2000. The origin and age of haplochromine fishes in Lake Victoria, East Africa. Proceedings of the Royal Society of London B: Biological Sciences 267: 1049–1061.

    CAS  Google Scholar 

  • Nascimento, M. H. S., M. S. Almeida, M. N. S. Veira, D. Limeira Filho, R. C. Lima, M. C. Barros & E. C. Fraga, 2016. DNA barcoding reveals high levels of genetic diversity in the fishes of the Itapecuru Basin in Maranhão, Brazil. Genetics and Molecular Research 15: 1–11.

    Google Scholar 

  • Nwani, C. D., S. Becker, H. E. Braid, E. F. Ude, O. I. Okogwu & R. Hanner, 2011. DNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species. Mitochondrial DNA 22: 43–51.

    CAS  PubMed  Google Scholar 

  • Olayemi, A., V. Nicolas, J. A. N. Hulselmans, A. D. Missoup, E. Fichet-Calvet, D. Amundala, A. Dudu, T. Dierckx, W. Wendelen, H. Leirs & E. Verheyen, 2012. Taxonomy of the African giant pouched rats (Nesomyidae: Cricetomys): molecular and craniometric evidence support an unexpected high species diversity. Zoological Journal of the Linnean Society 165: 700–719.

    Google Scholar 

  • Pandey, P. K., Y. S. Singh, S. R. Tripathy, R. Kumar, S. K. Abujam & J. Parhi, 2020. DNA barcoding and phylogenetics of freshwater fish fauna of Ranganadi River, Arunachal Pradesh. Gene 754: 144860.

    CAS  PubMed  Google Scholar 

  • Papa, Y., P. Y. Le Bail & R. Covain, 2021. Genetic landscape clustering of a large DNA barcoding data set reveals shared patterns of genetic divergence among freshwater fishes of the Maroni Basin. Molecular Ecology Resources 21(6): 2109–2124.

    CAS  PubMed  Google Scholar 

  • Pèlèbè, R. O. E., I. Imorou Toko, E. Verheyen, E. M. Van Steenberge, 2021. Molecular identification of an invasive Sarotherodon species from the Atchakpa Freshwater Reservoir (Ouémé River Basin, Benin) and comparison within S. melanotheron using COI markers. Diversity 13: 297.

    Google Scholar 

  • Pereira, L. H., G. M. Maia, R. Hanner, F. Foresti & C. Oliveira, 2011. DNA barcodes discriminate freshwater fishes from the Paraíba do Sul River Basin, São Paulo, Brazil. Mitochondrial Dna 22: 71–79.

    CAS  PubMed  Google Scholar 

  • Pereira, L. H. G., R. Hanner, F. Foresti & C. Oliveira, 2013. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genetics 14: 20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira, L. H. G., J. R. C. Castro, P. M. H. Vargas, J. A. M. Gomez & C. Oliveira, 2021. The use of an integrative approach to improve accuracy of species identification and detection of new species in studies of stream fish diversity. Genetica 149(2): 103–116.

    CAS  PubMed  Google Scholar 

  • Poll, M., 1961. Révision systématique et raciation géographique des Protopteridae de l’Afrique Centrale. Annales Du Musée Royal De L’afrique Centrale, Sciences Zoologiques 103: 3–50.

    Google Scholar 

  • Posada, D. & K. A. Crandall, 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    CAS  PubMed  Google Scholar 

  • Pugedo, M. L., F. R. de Andrade Neto, T. C. Pessali, J. L. Birindelli & D. C. Carvalho, 2016. Integrative taxonomy supports new candidate fish species in a poorly studied neotropical region: the Jequitinhonha River Basin. Genetica 144: 341–349.

    PubMed  Google Scholar 

  • Prié, V., B. Adam & F. Melki, 2021. From fin rays to DNA: supplementary morphological and molecular data to identify Mormyrus subundulatus Roberts, 1989 (Pisces: Mormyridae) from the Bandama River in Côte d’Ivoire. Zoosystema 43: 649–658.

    Google Scholar 

  • Rahman, Md. M., M. Norén, A. R. Mollah & S. O. Kullander, 2019. Building a DNA barcode library for the freshwater fishes of Bangladesh. Scientific Reports 9: 9382.

    PubMed  PubMed Central  Google Scholar 

  • Ratnasingham, S. & P. D. Hebert, 2007. BOLD: The Barcode of Life Data System (http://www. barcodinglife.org). Molecular ecology notes 7: 355–364.

  • Robinson, E. A., G. A. Blagoev, P. D. N. Hebert & S. J. Adamowicz, 2009. Prospects for using DNA barcoding to identify spiders in species-rich genera. ZooKeys 16: 27–46.

    Google Scholar 

  • Rosso, J. J., E. Mabragaña, M. G. Castro & J. M. de Astarloa, 2012. DNA barcoding Neotropical fishes: recent advances from the Pampa Plain, Argentina. Molecular Ecology Resources 12: 999–1011.

    CAS  PubMed  Google Scholar 

  • Russell, J. M., T. C. Johnson, K. R. Kelts, T. Lærda & M. R. Talbot, 2003. An 11 000-year lithostratigraphic and paleohydrologic record from equatorial Africa: Lake Edward, Uganda-Congo. Palaeogeography, Palaeoclimatology, Palaeoecology 193: 25–49.

    Google Scholar 

  • Sachithanandam, V. & P. M. Mohan, 2020. A review on DNA barcoding on Fish Taxonomy in India. In Trivedi, S., H. Rehman, S. Saggy, C. Panneerselvam & S. K. Ghosh (eds), DNA barcoding and molecular phylogeny Springer, CH: 153–175.

    Google Scholar 

  • Sales, N. G., S. Mariani, G. N. Salvador, T. C. Pessali & D. C. Carvalho, 2018. Hidden diversity hampers conservation efforts in a highly impacted neotropical river system. Frontiers in Genetics 9: 271.

    PubMed  PubMed Central  Google Scholar 

  • Shimabukuro-Dias, C. K., G. J. D. Costa Silva, F. Y. Ashikaga, F. Foresti & C. Oliveira, 2016. Molecular identification of the fish fauna from the pantanal flood plain area in Brazil. Mitochondrial DNA Part A 28: 588–592.

    Google Scholar 

  • Seehausen, O. & C. Wagner, 2014. Speciation in freshwater fishes. Annual Review of Ecology, Evolution and Systematics 45: 621–651.

    Google Scholar 

  • Schmidt, R. C., H. L. Bart & W. D. Nyingi, 2017. Multi-locus phylogeny reveals instances of mitochondrial introgression and unrecognized diversity in Kenyan barbs (Cyprininae: Smiliogastrini). Molecular Phylogenetics and Evolution 111: 35–43.

    CAS  PubMed  Google Scholar 

  • Shen, Y., N. Hubert, Y. Huang, X. Wang, X. Gan, Z. Peng & S. He, 2018. DNA barcoding the ichthyofauna of the Yangtze River: insights from the molecular inventory of a mega-diverse temperate fauna. Molecular Ecology Resources 19: 1278–1291.

    Google Scholar 

  • Sheraliev, B. & Z. Peng, 2021. Molecular diversity of Uzbekistan’s fishes assessed with DNA barcoding. Scientific Reports 11: 16894.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snoeks, J., I. J. Harrison & M. L. J. Stiassny, 2011. Chapter 3. The status and distribution of freshwater fishes. In Darwall, W. R. T., K. G. Smith, D. J. Allen, R. A. Holland, I. J. Harrison & E. G. E. Brooks (eds.), The Diversity of Life in African Freshwaters: Underwater, Under Threat. An Analysis of the Status and Distribution of Freshwater Species Throughout Mainland Africa. IUCN, Cambridge, VK and Gland, Switzerland. Pp. 42–73.

  • Sonet, G., J. Snoeks, Z. T. Nagy, E. Vreven, G. Boden, F. C. Breman, E. Decru, M. Hanssens, A. Ibala Zamba, K. Jordaens, V. Mamonekene, T. Musschoot, J. Van Houdt, M. Van Steenberge, S. L. Wamuini & E. Verheyen, 2019. DNA barcoding fishes from the Congo and the Lower Guinean provinces: assembling a reference library for poorly inventoried fauna. Molecular Ecology Resources 19: 728–743.

    CAS  PubMed  Google Scholar 

  • Srivathsan, A. & R. Meier, 2012. On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA barcoding literature. Cladistics 28: 190–194.

    PubMed  Google Scholar 

  • Steinke, D., M. Vences, W. Salzburger & A. Meyer, 2005. TaxI: a software tool for DNA barcoding using distance methods. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 1975–1980.

    CAS  Google Scholar 

  • Steinke, D., T. S. Zemlak, J. A. Boutillier & P. D. Hebert, 2009. DNA barcoding of Pacific Canada’s fishes. Marine Biology 156: 2641–2647.

    Google Scholar 

  • Stewart, K. M., 2010. Fossil fish from the Nile River and its southern basins. In Dumont, H. J. (ed.), The Nile: Origin, environments, limnology and human use. Springer, Dordrecht, Netherlands: pp. 677–704.

    Google Scholar 

  • Sturmbauer, C. & A. Meyer, 1992. Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 358: 578–581.

    CAS  PubMed  Google Scholar 

  • Thomson, A. W. & L. M. Page, 2010. Taxonomic revision of the Amphilius uranoscopus group (Teleostei: Siluriformes) in Kenya, with the description of a new species from the Athi River. Bulletin of the Florida Museum of Natural History 49: 45–66.

    Google Scholar 

  • Thomson, A. W., L. M. Page & S. A. Hilber, 2015. Revision of the Amphilius jacksonii complex (Siluriformes: Amphiliidae), with the descriptions of five new species. Zootaxa 3986: 61–87.

    PubMed  Google Scholar 

  • Tibihika, P. D., M. Curto, E. Alemayehu, H. Waidbacher, C. Masembe, P. Akoll., & H. Meimberg, 2020. Molecular genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus L. 1758) in East African natural and stocked populations. BMC Evolutionary Biology 20: 9.

    Google Scholar 

  • Triantafyllidis, A., D. Bobori, C. Koliamitra, E. Gbandi, M. Mpanti, O. Petriki & N. Karaiskou, 2011. DNA barcoding analysis of fish species diversity in four north Greek lakes. Mitochondrial DNA 22: 37–42.

    CAS  PubMed  Google Scholar 

  • Valdez-Moreno, M., N. V. Ivanova, M. Elías-Gutiérrez, S. Contreras-Balderas & P. D. N. Hebert, 2009. Probing diversity in freshwater fishes from Mexico and Guatemala with DNA barcodes. Journal of Fish Biology 74: 377–402.

    CAS  PubMed  Google Scholar 

  • Van Ginneken, M., E. Decru, E. Verheyen & J. Snoeks, 2017. Morphometry and DNA barcoding reveal cryptic diversity in the genus Enteromius (Cypriniformes: Cyprinidae) from the Congo basin, Africa. European Journal of Taxonomy 310: 10.

    Google Scholar 

  • Van Steenberge, M. W., M. P. Vanhove, A. Chocha Manda, M. H. Larmuseau, B. L. Swart, F. Khang’Mate, & F. A. Volckaert, 2020. Unravelling the evolution of Africa’s drainage basins through a widespread freshwater fish, the African sharptooth catfish Clarias gariepinus. Journal of Biogeography 47: 1739–1754.

    Google Scholar 

  • Verheyen, E., L. Ruber, J. Snoeks & A. Meyer, 1996. Mitochondrial phylogeography of rock-dwelling cichlid fishes reveals evolutionary influence of historical lake level fluctuations of Lake Tanganyika, Africa. Philosophical Transactions: Biological Sciences 1: 797–805.

    Google Scholar 

  • Villesen, P., 2007. FaBox: an online toolbox for fasta sequences. Molecular Ecology Notes 7: 965–968.

    CAS  Google Scholar 

  • Vranken, N., M. Van Steenberge & J. Snoeks, 2019. Grasping ecological opportunities: not one but five paedophagous species of Haplochromis (Teleostei: Cichlidae) in the Lake Edward system. Hydrobiologia 832: 105–134.

    CAS  Google Scholar 

  • Vranken, N., M. Van Steenberge, A. Kayenbergh & J. Snoeks, 2020a. The lobed-lipped species of Haplochromis (Teleostei, Cichlidae) from Lake Edward, two instead of one. Journal of Great Lakes Research 46: 1079–1089.

    Google Scholar 

  • Vranken, N., M. Van Steenberge, A. Balagizi & J. Snoeks, 2020b. The synonymy of Haplochromis pharyngalis and Haplochromis petronius (Cichlidae). Journal of Fish Biology 97: 1554–1559.

    PubMed  Google Scholar 

  • Vranken, N., M. Van Steenberge & J. Snoeks, 2020c. Similar ecology, different morphology: three new species of oral-mollusc shellers from Lake Edward. Journal of Fish Biology 96: 1202–1217.

    PubMed  Google Scholar 

  • Vranken, N., M. Van Steenberge, A. Heylen, E. Decru & J. Snoeks, 2022. From a pair to a dozen: the piscivorous species of Haplochromis (Cichlidae) from the Lake Edward system. European Journal of Taxonomy (in press).

  • Ward, R. D., 2009. DNA barcode divergence among species and genera of birds and fishes. Molecular Ecology Resources 9: 1077–1085.

    CAS  PubMed  Google Scholar 

  • Ward, R. D., T. S. Zemlak, B. H. Innes, P. R. Last & P. D. N. Hebert, 2005. DNA barcoding Australia’s Wsh species. Philosophical Transactions: Biological Sciences 360: 1847–1857.

    CAS  PubMed Central  Google Scholar 

  • Ward, R. D., B. H. Holmes & G. K. Yearsley, 2008. DNA barcoding reveals a likely second species of Asian sea bass (barramundi) (Lates calcarifer). Journal of Fish Biology 72: 458–463.

    Google Scholar 

  • Welcomme, R. L., 1988. International introductions of inland aquatic species, Food and Agriculture Organization of the United Nations, Rome:

    Google Scholar 

  • Wildekamp, R. H., 1995. A world of killies, Atlas of the oviparous cyprinodontiform fishes of the world (Vol. 2). Mishawaka, IN: American Killifish Association.

  • Worthington, E. B., 1954. Speciation of fishes in African lakes. Nature 173: 1064–1067.

    Google Scholar 

Download references

Acknowledgements

This publication is the output of work done under the Belspo-funded BRAIN-be projects ‘HIPE’ (Human impacts on ecosystem health and resources of Lake Edward) and ‘KEAFish’ (The biodiversity, biogeography and evolutionary history of the northern basins of the Great African Lakes: the enigmatic fish faunas of Lakes Kivu, Edward and Albert revisited). The fieldwork by NV, MVS, and ED was supported by the FWO and fieldwork by MVS by the King Leopold III Fund for Nature Exploration and Conservation. We are very grateful to M. Mbalassa (Université Officielle de Bukavu), L. Wasswa (Ugandan Fisheries Department), and M. Bifamengo (NaFIRRI, Uganda) for their indispensable help during the fieldwork and to W. Okello (NaFFIRI) for the major logistic support during the multidisciplinary field trips. We thank P. Bragança (SAIAB) for help in identifying the killifish and M. Parrent (RMCA) for the collection management.

Funding

The expeditions to the Lake Edward system took place under the Belspo-funded BRAIN-be project ‘HIPE’ (Human impacts on ecosystem health and resources of Lake Edward). The fieldwork by NV, MVS, and ED was supported by the FWO and fieldwork by MVS by the King Leopold III Fund for Nature Exploration and Conservation.

Author information

Authors and Affiliations

Authors

Contributions

ED, HM, AM, AK, and MVS performed the DNA work in the lab. Maarten Van Steenberge, Nathan Vranken, Jos Snoeks, and Eva Decru collected samples during the field work. Heleen Maetens constructed the sequence data files, Eva Decru did the DNA analyses. Eva Decru and Maarten Van Steenberge wrote the manuscript, with input from all authors. Final editing was done by Jos Snoeks and Maarten Van Steenberge. All authors read and approved the manuscript.

Corresponding author

Correspondence to Eva Decru.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling Editor: Christian Sturmbauer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decru, E., Vranken, N., Maetens, H. et al. DNA barcoding the Lake Edward basin: high taxonomic coverage of a tropical freshwater ichthyofauna. Hydrobiologia 849, 1743–1762 (2022). https://doi.org/10.1007/s10750-022-04812-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04812-0

Keywords

Navigation