Skip to main content

Advertisement

Log in

Unrecognized species diversity and endemism in the cichlid genus Bujurquina (Teleostei: Cichlidae) together with a molecular phylogeny document large-scale transformation of the western Amazonian river network and reveal complex paleogeography of the Ecuadorian Amazon

  • ADVANCES IN CICHLID RESEARCH V
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Bujurquina is the most widely distributed and species-rich genus of cichlids in the western Amazon of South America, yet beyond a few taxonomic studies remains almost completely unknown. We use a newly obtained collection of Bujurquina specimens which for the first time provides a representative sampling throughout its whole distribution area. Based on morphological and molecular data, we provide the first phylogenetic analyses of the genus, review the diversity of species in the genus and interpret its evolution with focus on the Bujurquina fauna of Ecuador. The Bujurquina fauna of Ecuador presently includes only two supposedly endemic species (B. zamorensis and B. pardus) plus based on some studies two to three Peruvian species, which we find to be erroneous. Our results identify in Ecuador at least 12 species, 11 of which are also identified in the molecular phylogeny. The large-scale phylogeny and biogeography of Bujurquina in the western Amazon are found to be in very good agreement with geological evolution of the western Amazon. Over the smaller scale of the Ecuadorian Amazon, our results for the first time reveal a complex paleogeography with a reconstructed river network reconfiguration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Albert, J. S. & R. E. Reis (eds), 2011. Historical Biogeography of Neotropical Freshwater Fishes. University of California Press, Berkeley, CA.

    Google Scholar 

  • Albert, J. S., P. Val & C. Hoorn, 2018. The changing course of the Amazon River in the Neogene: center stage for Neotropical diversification. Neotropical Ichthyology. https://doi.org/10.1590/1982-0224-20180033.

    Article  Google Scholar 

  • Allgayer, R., 1989. Révision et redescription du genre Theraps Günther 1862. Description de deux espèces nouvelles du Mexique (Pisces, Perciformes, Cichlidae). Revue Française Des Cichlidophiles 10: 4–30.

    Google Scholar 

  • Arbour, J. H., R. E. Barriga Salazar & H. López-Fernández, 2014. A new species of Bujurquina (Teleostei: Cichlidae) from the Río Danta, Ecuador, with a key to the species in the genus. Copeia 2014: 79–86. https://doi.org/10.1643/CI-13-028.

    Article  Google Scholar 

  • Barriga, R. S., 2012. Lista de peces de agua dulce e intermareales del Ecuador. Revista Politecnica 30(3): 83–119.

    Google Scholar 

  • Bernal, C., F. Christophoul, J. Darrozes, J.-C. Soula, P. Baby & J. Burgos, 2011. Late glacial and Holocene avulsions of the Rio Pastaza Megafan (Ecuador, Peru): frequency and controlling factors. International Journal of Earth Sciences (Geol. Rundsch) 100: 1759–1782. https://doi.org/10.1007/s00531-010-0555-9.

    Article  Google Scholar 

  • Bes de Berc, S., J. C. Soula, P. Baby, M. Souris, F. Christophoul & J. Rosero, 2005. Geomorphic evidence of active deformation and uplift in a modern continental wedge-top-foredeep transition: example of the eastern Ecuadorian Andes. Tectonophysics 399(1–4): 351–380.

    Article  Google Scholar 

  • Burress, E. D., F. Alda, A. Duarte, M. Loureiro, J. W. Armbruster & P. Chakrabarty, 2017. Phylogenomics of pike cichlids (Cichlidae: Crenicichla): the rapid evolution and trophic diversification of an incipient species flock. Journal of Evolutionary Biology. https://doi.org/10.1111/jeb.13196.

    Article  PubMed  Google Scholar 

  • Burress, E. D., L. Piálek, J. R. Casciotta, A. Almirón, M. Tan, J. W. Armbruster & O. Říčan, 2018. Island- and lake-like parallel adaptive radiations replicated in rivers. Proceedings of the Royal Society B, Biological Sciences 285: 20171762.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bussing, W. A., 1976. Geographical distribution of the San Juan ichthyofauna of Central America with remarks on its origin and ecology. In Thorson, T. B. (ed), Investigations of the Ichthyofauna of Nicaraguan Lakes. University of Nebraska, Lincoln, NE: 157–175.

    Google Scholar 

  • Bussing, W. A., 1985. Patterns of distribution of the Central American ichthyofauna. In Stehli, F. G. & S. D. Webb (eds), The Great American Biotic Interchange. Plenum Publishing Corporation, New York: 453–472.

    Chapter  Google Scholar 

  • Carstens, B. C. & T. A. Dewey, 2010. Species delimitation using a combined coalescent and information-theoretic approach: an example from North American Myotis bats. Systematic Biology 59: 400–414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho, T., 2011. The Amazon-Paraguay divide. In Albert, J. S. & R. E. Reis (eds), Historical Biogeography of Neotropical Freshwater Fishes. University of California Press, Berkeley, CA: 193–202.

    Google Scholar 

  • Darlington, P. J., Jr., 1957. Zoogeography: The Geographical Distribution of Animals. Wiley, New York: 675.

    Google Scholar 

  • Drummond, A. J. & A. Rambaut, 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dupuis, J., A. Roe & F. Sperling, 2012. Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Molecular Ecology 21: 4422–4436.

    Article  PubMed  Google Scholar 

  • Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espurt, N., P. Baby, S. Brusset, M. Roddaz, W. Hermoza, V. Regard, P.-O. Antoine, R. Salas-Gismondi & R. Bolaños, 2007. How does the Nazca Ridge subduction influence the modern Amazonian foreland basin? Geology 35(6): 515. https://doi.org/10.1130/g23237a.1.ISSN0091-7613.

    Article  Google Scholar 

  • Espurt, N., P. Baby, S. Brusset, M. Roddaz, W. Hermoza & J. Barbarand, 2010. The Nazca Ridge and uplift of the Fitzcarrald Arch: implications for regional geology in Northern South America. In Hoorn, C. & F. P. Wesselingh (eds), Amazonia: Landscape and Species Evolution. Wiley-Blackwell Publishing Ltd., Oxford. https://doi.org/10.1002/9781444306408.ch6.

    Chapter  Google Scholar 

  • Fontaneto, D., E. A. Herniou, C. Boschetti, M. Caprioli, G. Melone, C. Ricci & T. G. Barraclough, 2007. Independently evolving species in asexual bdelloid rotifers. PLoS Biology 5: e87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujisawa, T. & T. G. Barraclough, 2013. Delimiting species using single-locus data and the generalized mixed Yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology 62: 707–724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita, M. K., A. D. Leache, F. T. Burbrink, J. A. McGuire & C. Moritz, 2012. Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology and Evolution 27: 480–488.

    Article  PubMed  Google Scholar 

  • Gilmore, M. P., C. Vriesendorp, W. S. Alverson, Á. del Campo, R. von May, C. López Wong & S. Ríos Ochoa (eds), 2010. Perú: Maijuna. Rapid Biological and Social Inventories Report 22. The Field Museum, Chicago.

  • Gutscher, M.-A., J. Malavieille, S. Lallemand & J.-Y. Collot, 1999. Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth and Planetary Science Letters 168(3–4): 255–270. https://doi.org/10.1016/S0012-821X(99)00060-6.

    Article  CAS  Google Scholar 

  • Hampel, A., 2002. The migration history of the Nazca Ridge along the Peruvian active margin: a re-evaluation. Earth and Planetary Science Letters 203(2): 665–679. https://doi.org/10.1016/S0012-821X(02)00859-2.

    Article  CAS  Google Scholar 

  • Hoorn, C. & F. P. Wesselingh (eds), 2010a. Amazonia: Landscape and Species Evolution: A Look into the Past. Wiley-Blackwell, Chichester, UK. ISBN 9781405181136.

  • Hoorn, C. & F. P. Wesselingh, 2010b. Introduction: Amazonia, landscape and species evolution. In Hoorn, C. & F. P. Wesselingh (eds), Amazonia: Landscape and Species Evolution: A Look into the Past. Wiley-Blackwell Publishing Ltd., Oxford. https://doi.org/10.1002/9781444306408.ch1.

    Chapter  Google Scholar 

  • Hoorn, C., F. P. Wesselingh, J. Hovikoski & J. Guerrero, 2010. The development of the Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). In Hoorn, C. & F. P. Wesselingh (eds), Amazonia: Landscape and Species Evolution. Wiley-Blackwell Publishing Ltd., Oxford. https://doi.org/10.1002/9781444306408.ch8.

    Chapter  Google Scholar 

  • Hubbell, S. P., F. He, R. Condit, L. Borda-de-Agua, J. Kellner & H. Ter Steege, 2008. Colloquium paper: how many tree species are there in the Amazon and how many of them will go extinct? Proceedings of the National Academy of Sciences of the United States of America 105(Suppl 1): 11498–11504. https://doi.org/10.1073/pnas.0801915105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubert, N., F. Duponchelle, J. Nuñez, C. Garcia-Davila, D. Paugy & J.-F. Renno, 2007. Phylogeography of the piranha genera Serrasalmus and Pygocentrus: implications for the diversification of the Neotropical ichthyofauna. Molecular Ecology 16(10): 2115–2136. https://doi.org/10.1111/j.1365-294x.2007.03267.x.

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck, J. P. & F. Ronquist, 2001. MrBayes: Bayesian inference of phylogenetics trees. Bioinformatics 17: 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Ilves, K. L., D. Torti & H. López-Fernández, 2017. Exon-based phylogenomics strengthens the phylogeny of Neotropical cichlids and identifies remaining conflicting clades (Cichliformes: Cichlidae: Cichlinae). Molecular Phylogenetics and Evolution 118: 232–243. https://doi.org/10.1016/j.ympev.2017.10.008.

    Article  PubMed  Google Scholar 

  • Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Mentjies & A. Drummond, 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kullander, S. O., 1986. Cichlid Fishes of the Amazon River Drainage of Peru. Swedish Museum of Natural History, Stockholm

    Google Scholar 

  • Kullander, S. O., 1998. A phylogeny and classification of the South American Cichlidae (Teleostei: Perciformes). In Malabarba, L. R., R. E. Reis, R. P. Vari, Z. M. S. Lucena & C. A. S. Lucena (eds), Phylogeny and Classification of Neotropical Fishes. Edipucrs, Porto Alegre: 461–498.

    Google Scholar 

  • Kullander, S. O., H. López-Fernández & P. van der Sleen, 2018. Family Cichlidae – Cichlids. In van der Sleen, P. & J. S. Albert (eds), Field Guide to the Fishes of the Amazon, Orinoco, and Guianas. Princeton University Press, New Jersey: 359–385.

    Google Scholar 

  • Longo, R., & J. Baldock, 1982. National geological map of the Republic of Ecuador, 1:1 000 000.

  • Lovejoy, N. R., S. C. Willis & J. S. Albert, 2010. Molecular signatures of neogene biogeographical events in the Amazon fish fauna. In Hoorn, C. & F. P. Wesselingh (eds), Amazonia: Landscape and Species Evolution. Wiley-Blackwell, Chichester. https://doi.org/10.1002/9781444306408.ch25.

    Chapter  Google Scholar 

  • Michaud, F., C. Witt & J.-Y. Royer, 2009. Influence of the Subduction of the Carnegie Volcanic Ridge on Ecuadorian Geology: Reality and Fiction. Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision. Memoir. 204. Geological Society of America: 217–228. ISBN 978-0-8137-1204-8.

  • Monaghan, M. T., R. Wild, M. Elliot, T. Fujisawa, M. Balke, D. G. J. Inward, D. C. Lees, R. Ranaivosolo, P. Eggleton, T. G. Barraclough & A. P. Vogler, 2009. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58: 298–311.

    Article  CAS  PubMed  Google Scholar 

  • Monzier, M., C. Robin, P. Samaniego, M. L. Hall, J. Cotten, P. Mothes & N. Arnaud, 1999. Sangay volcano, Ecuador: structural development, present activity and petrology. Journal of Volcanology and Geothermal Research 90(1–2): 49–79.

    Article  CAS  Google Scholar 

  • Mora, A., P. Baby, M. Roddaz, M. Parra, S. Brusset, W. Hermoza & N. Espurt, 2010. Tectonic history of the Andes and Sub-Andean zones: implications for the development of the Amazon drainage basin. In Hoorn, C. & F. P. Wesselingh (eds), Amazonia: Landscape and Species Evolution. Wiley-Blackwell Publishing Ltd., Oxford. https://doi.org/10.1002/9781444306408.ch4.

    Chapter  Google Scholar 

  • Musilová, Z., O. Říčan, K. Janko & J. Novák, 2008. Molecular phylogeny and biogeography of the Neotropical cichlid fishtribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae). Molecular Phylogenetics and Evolution 46: 659–672.

    Article  PubMed  Google Scholar 

  • Musilová, Z., O. Říčan & J. Novák, 2009. Phylogeny of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae) based on morphological and molecular data, with the description of a new genus. Journal of Zoological Systematics and Evolutionary Research 47: 234–247.

    Article  Google Scholar 

  • Musilová, Z., O. Říčan, Š Říčanová, P. Janšta, O. Gahura & J. Novák, 2015. Phylogeny and historical biogeography of trans-Andean cichlid fishes (Teleostei: Cichlidae). Vertebrate Zoology 65: 333–350.

    Article  Google Scholar 

  • Myers, G. S., 1966. Derivation of the freshwater fish fauna of Central America. Copeia 4: 766–773. https://doi.org/10.2307/1441405.

    Article  Google Scholar 

  • Nylander, J. A. A., 2004. MrModeltest 2.2. Evolutionary Biology Centre. Uppsala University, Sweden [available on Internet at http://www.abc.se/*nylander].

  • Piálek, L., O. Říčan, J. Casciotta, A. Almirón & J. Zrzavý, 2012. Multilocus phylogeny of Crenicichla (Teleostei: Cichlidae), with biogeography of the C. lacustris group: species flocks as a model for sympatric speciation in rivers. Molecular Phylogenetics and Evolution 62: 46–61.

    Article  PubMed  Google Scholar 

  • Piálek, L., K. Dragová, J. Casciotta, A. Almirón & O. Říčan, 2015. Description of two new species of Crenicichla (Teleostei: Cichlidae) from the lower Iguazú river with a taxonomic reappraisal of C. iguassuensis, C. tesay and C. yaha. Historia Natural 5: 5–27.

    Google Scholar 

  • Piálek, L., E. Burress, K. Dragová, A. Almirón, J. Casciotta & O. Říčan, 2019a. Phylogenomics of pike cichlids (Cichlidae: Crenicichla) of the C. mandelburgeri species complex: rapid ecological speciation in the Iguazú River and high endemism in the Middle Paraná basin. Hydrobiologia 832: 355–375. https://doi.org/10.1007/s10750-018-3733-6.

    Article  CAS  Google Scholar 

  • Piálek, L., J. Casciotta, A. Almirón & O. Říčan, 2019b. A new pelagic predatory pike cichlid (Teleostei: Cichlidae: Crenicichla) from the C. mandelburgeri species complex with parallel and reticulate evolution. Hydrobiologia 832: 377–395. https://doi.org/10.1007/s10750-018-3754-1.

    Article  CAS  Google Scholar 

  • Pitman, N., E. Ruelas Inzunza, C. Vriesendorp, D. F. Stotz, T. Wachter, Á. del Campo, D. Alvira, B. Rodríguez Grández, R. C. Smith, A. R. Sáenz Rodríguez & P. Soria Ruiz (eds), 2013. Perú: Ere-Campuya-Algodón. Rapid Biological and Social Inventories Report 25. The Field Museum, Chicago.

  • Pons, J., T. G. Barraclough, J. Gomez-Zurita, A. Cardoso, D. P. Duran, S. Hazell, S. Kamoun, W. D. Sumlin & A. P. Vogler, 2006. Sequence based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595–609.

    Article  PubMed  Google Scholar 

  • Powell, J. R., 2012. Accounting for uncertainty in species delineation during the analysis of environmental DNA sequence data. Methods in Ecology and Evolution 3: 1–11.

    Article  Google Scholar 

  • Rambaut, A. & A. J. Drummond, 2007. Tracer 1.5.0. [available on Internet at http://beast.bio.ed.ac.uk/Tracer].

  • Rannala, B. & Z. Zang, 2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164: 1645–1656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regard, V., R. Lagnous, N. Espurt, J. Darrozes, P. Baby, M. Roddaz, Y. Calderon & W. Hermoza, 2009. Geomorphic evidence for recent uplift of the Fitzcarrald Arch (Peru): a response to the Nazca Ridge subduction. Geomorphology 107(3–4): 107–117. https://doi.org/10.1016/j.geomorph.2008.12.003.

    Article  Google Scholar 

  • Reis, R. E., S. O. Kullander & C. J. Ferraris Jr., 2003. Check list of the freshwater fishes of South and Central America. Edipucrs, Porto Alegre.

    Google Scholar 

  • Reis, R. E., J. S. Albert, F. Di Dario, M. M. Mincarone, P. Petry & L. A. Rocha, 2016. Fish biodiversity and conservation in South America. Journal of Fish Biology 89: 12–47. https://doi.org/10.1111/jfb.13016.

    Article  CAS  PubMed  Google Scholar 

  • Říčan, O., 2017. Sympatry and syntopy of cichlids (Teleostei: Cichlidae) in the Selva Central, upper Ucayali river basin, Peru. Check List 13(3): 2146. https://doi.org/10.15560/13.3.2146.

    Article  Google Scholar 

  • Říčan, O., Z. Musilová, M. Muška & J. Novák, 2005. Development of coloration patterns in Neotropical cichlids (Perciformes: Cichlidae: Cichlasomatinae). Folia Zoologica 54: 1–46.

    Google Scholar 

  • Říčan, O., R. Zardoya & I. Doadrio, 2008. Phylogenetic relationships of Middle American cichlids (Teleostei, Cichlidae, Heroini) based on combined evidence from nuclear genes, mtDNA, and morphology. Molecular Phylogenetics and Evolution 49: 941–958.

    Article  PubMed  Google Scholar 

  • Říčan, O., L. Piálek, R. Zardoya, I. Doadrio & J. Zrzavý, 2013. Biogeography of the Mesoamerican Cichlidae (Teleostei: Heroini): colonization through the GAARlandia land bridge and early diversification. Journal of Biogeography 40: 579–593.

    Article  Google Scholar 

  • Říčan, O., L. Piálek, K. Dragová & J. Novák, 2016. Diversity and evolution of the Middle American cichlid fishes (Teleostei: Cichlidae) with revised classification. Vertebrate Zoology 66: 1–102.

    Article  Google Scholar 

  • Říčan, O., Š, Říčanová, K. Dragová, L. Piálek, A. Almirón & J. Casciotta, 2019. Species diversity in Gymnogeophagus (Teleostei: Cichlidae) and comparative biogeography of cichlids in the Middle Paraná basin, an emerging hotspot of fish endemism. Hydrobiologia 832: 331–354. https://doi.org/10.1007/s10750-018-3691-z.

    Article  CAS  Google Scholar 

  • Říčan, O., K. Dragová, A. Almirón, J. Casciotta, J. Gottwald & L. Piálek, 2021. MtDNA species-level phylogeny and delimitation support significantly underestimated diversity and endemism in the largest Neotropical cichlid genus (Cichlidae: Crenicichla). PeerJ 9: e12283. https://doi.org/10.7717/peerj.12283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roddaz, M., W. Hermoza, A. Mora, P. Baby, M. Parra, F. Christophoul, S. Brusset & N. Espurt, 2010. Cenozoic sedimentary evolution of the Amazonian foreland basin system. In Hoorn, C. & F. P. Wesselingh (eds), Amazonia: Landscape and Species Evolution. Wiley-Blackwell Publishing Ltd., Oxford. https://doi.org/10.1002/9781444306408.ch5.

    Chapter  Google Scholar 

  • Roddaz, M., F. Christophoul, J. D. B. Zambrano, J. Soula & P. Baby, 2012. Provenance of late Oligocene to quaternary sediments of the Ecuadorian Amazonian foreland basin as inferred from major and trace element geochemistry and Nd–Sr isotopic composition. Journal of South American Earth Sciences 37: 136–153. https://doi.org/10.1016/j.jsames.2012.02.008.

    Article  CAS  Google Scholar 

  • Ronquist, F. & J. P. Huelsenbeck, 2003. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180.

    Article  CAS  PubMed  Google Scholar 

  • Spikings, R. A., W. Winkler, D. Seward & R. Handler, 2001. Along-strike variations in the thermal and tectonic response of the continental Ecuadorian Andes to the collision with heterogeneous oceanic crust. Earth and Planetary Science Letters 186(1): 57–73. https://doi.org/10.1016/S0012-821X(01)00225-4.

    Article  CAS  Google Scholar 

  • Stawikowski, R. & U. Werner, 1998. Die Buntbarsche Amerikas, Vol. 1. Eugen Ulmer Verlag, Stuttgart.

    Google Scholar 

  • Stawikowski, R. & U. Werner, 2004. Die Buntbarsche Amerikas. Band 3: Erdfresser, Hecht-und Kammbuntbarsche. Eugen Ulmer Verlag, Stuttgart.

  • Subramaniam, A., 2008. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proceedings of the National Academy of Sciences of the United States of America 105: 10460–10465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swofford, D. L., 2003. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Van der Sleen, P. & J. S. Albert, 2018. Field Guide to the Fishes of the Amazon, Orinoco, and Guianas. Princeton University Press, New Jersey.

    Book  Google Scholar 

  • Villesen, P., 2007. FaBox: an online toolbox for FASTA sequences. Molecular Ecology Notes 7(6): 965–968. https://doi.org/10.1111/j.1471-8286.2007.01821.x.

    Article  CAS  Google Scholar 

  • Vriesendorp, C., J. A. Álvarez, N. Barbagelata, W. S. Alverson & D. K. Moskovits (eds), 2007. Perú: Nanay-Mazán-Arabela. Rapid Biological Inventories Report 18. The Field Museum, Chicago

  • Vuataz, L., M. Sartori, A. Wagner & M. T. Monaghan, 2011. Toward a DNA taxonomy of Alpine Rhithrogena (Ephemeroptera: Heptageniidae) using a mixed Yule-coalescent analysis of mitochondrial and nuclear DNA. PLoS ONE 6: e19728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace, A. R., 1876. The Geographical Distribution of Animals; With a Study of the Relations of Living and Extinct Faunas as Eelucidating the Past Changes of the Earth’s Surface, Two volumes. Harper & Brothers, New York.

    Book  Google Scholar 

  • Wesselingh, F. P. & C. Hoorn, 2011. Geological development of Amazon and Orinoco Basins. In Albert, J. S. & R. E. Reis (eds), Historical Biogeography of Neotropical Freshwater Fishes. University of California Press, Berkeley, CA: 59–67.

    Google Scholar 

  • Winemiller, K. & S. Willis, 2011. The Vaupes Arch and Casiquiare canal: barriers and passages. In Albert, J. S. & R. E. Reis (eds), Historical Biogeography of Neotropical Freshwater Fishes. University of California Press, Berkeley, CA: 225–242.

    Chapter  Google Scholar 

  • Yang, Z. & B. Rannala, 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America 107: 9264–9269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., A. J. Harris, C. Blair & X. J. He, 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution 87: 46–49.

    Article  PubMed  Google Scholar 

  • Zhang, J., P. Kapli, P. Pavlidis & A. Stamatakis, 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Ecuadorian army (Ejército del Ecuador) and especially colonel Alex Villalba (Shell) for logistic and aviation support, which enabled us to explore parts of the lowland Ecuadorian Amazon. We thank our native guides, who helped us in exploring the lowland Amazon of Ecuador, namely Elías Manya and his son Renato (the Curaray basin), Holmer and his family and the whole village of Llanchama (the Napo, Tiputini and Yasuni), and the villages and many guides of Montalvo and Conambo (the Bobonaza, Corrientes and Tigre basins). We also thank Hernán Ortega (Universidad Nacional Mayor de San Marcos, Lima, Perú) and Javier Maldonado Ocampo (Universidad Javeriana, Bogota, Colombia) for enabling our collections in their countries and for depositing specimens in their collections. This study was partially supported by a DCG grant (Deutsche Cichliden-Gesellschaft) to OŘ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oldřich Říčan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: S. Koblmüller, R. C. Albertson, M. J. Genner, K. M. Sefc & T. Takahashi / Advances in Cichlid Research V: Behaviour, Ecology and Evolutionary Biology.

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2022_5019_MOESM1_ESM.docx

Supplementary file1 (DOCX 5004 kb)—Fig. S1. Photos of live specimens of described species of Bujurquina. The only species missing are B. pardus and B. cordemadi. This is the first time photos of virtually all described species are presented, since for most species the live appearance is not known, and for those where it is, it is not from type localities or close to them as presented here. Fig. S2. Preliminary exploring phylogenetic analysis based on NJ topology with MP bootstrap supports (for the outgroups which are omitted from the figures in the main text followed by Bayesian posterior probabilities above 0.95). This analysis served to get first look at the phylogenetic data before collapsing them into haplotypes and to identify the placement of likely hybrid specimens on the topology prior to rigorous phylogenetic analyses. The hybrid specimens where confirmed by conflict between morphological identification and phylogenetic placement in mtDNA are identified by arrows, as are other conflicts between morphological identification and phylogenetic position, where however the specimens fully agree with the diagnosis of their species but are in the phylogeny found within other species. Such instances of conflict are identified as mtDNA sweep events. The two main phylogenetic groups of Bujurquina are identified, as are calibration nodes for the dating analysis (in yellow; in green are the results of the dating analysis for these nodes). Fig. S3. Overview of the phylogenetic relationships of Bujurquina (based on the mtDNA cytb marker from BEAST analysis) together with presentation of the most important diagnostic coloration pattern characters in Bujurquina. The most important diagnostic coloration pattern characters for Bujurquina species are found on the head (the suborbital stripe), dorsal fin (its ornamentation, or lack of it in the Southern group species) and body (course of the midlateral stripe) and are summarized in the pictographs and identified by the accompanying photos and arrows. Red arrow identifies the course, shape and development of the suborbital stripe (and or blotch or blotches formed by reduction of the stripe) in adult specimens, orange arrow in juvenile specimens. Green arrow identifies the ornamentation (or lack of it) in the spinous portion of the dorsal fin. Blue arrow identifies the course of the midlateral stripe (either to the caudal peduncle, coded as C, or to the posterior portion of the dorsal fin, coded as D). Note that based on these few coloration pattern characters, all species in the Northern group can be diagnosed from each other, as shown by the pictograms to the right of the figure. Fig. S4. Geological map of the western Amazon of Ecuador showing correspondence between distribution, phylogeography, age of species and geographic divides (see Fig. 5) compared to distribution, age and composition of geological formations. White interrupted arrows identify the inferred paleodrainage (based on the composition of the respective geologic formations) flowing towards the north based on geologic information which finds support in the biogeographic reconstruction in Fig. 5. Circles identify major volcanos in the western Amazon, yellow is Sangay, red and green are Sumaco and Reventador volcanoes. Map modified from Longo, R., Baldock, J. 1982. National Geological Map of the Republic of Ecuador, 1:1 000 000.

Supplementary file2 (XLSX 37 kb)—Table S1. Specimens included in the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Říčan, O., Říčanová, Š., Rodriguez Haro, L.R. et al. Unrecognized species diversity and endemism in the cichlid genus Bujurquina (Teleostei: Cichlidae) together with a molecular phylogeny document large-scale transformation of the western Amazonian river network and reveal complex paleogeography of the Ecuadorian Amazon. Hydrobiologia 850, 2199–2229 (2023). https://doi.org/10.1007/s10750-022-05019-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05019-z

Keywords

Navigation