Skip to main content

Advertisement

Log in

How on Earth did that get there? Natural and human vectors of aquatic macrophyte global distribution

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

No previous study has examined the large-scale distributional drivers of the entire global pool of 3,499 macrophyte species, despite the obvious importance of this for understanding the macroecology of these plants. To assess the hypothesis that natural rather than human-related transfer vectors act as the primary long-distance drivers of global movement of aquatic macrophytes, we analysed current macrophyte species distributions in relation to a set of human-related and natural transfer vectors. Most macrophytes (2,492 species: 71.2% of the global total) are endemic to a single ecozone, and generally lack the various functional adaptations needed for successful long-distance propagule transport. Such traits are, however, common in the 1,007 (28.8%) species native in > 1 ecozone. In total, 779 species (22.3%) are introduced, naturalised or invasive (I species) in one or more ecozones outwith their native range. The proportion of I species varies between ecozones and is best predicted by annual temperature and longitude. A migratory bird transfer vector and climatic variables strongly predict global native macrophyte species occurrence. Some native species of Miocene origin (or older) may have had their world distribution influenced by ancient vicariance events, while inter-ecozone hydrochory and Late Quaternary climate change are also relevant factors influencing a few species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Alahuhta, J., A. Virtala, J. Hjort, F. Eck, L. B. Johnson, L. Sass & J. Heino, 2017. Average niche breadths of species in lake macrophyte communities respond to ecological gradients variably in four regions on two continents. Oecologia 184: 219–235. https://doi.org/10.1007/s00442-017-3847-y.

    Article  PubMed  Google Scholar 

  • Alahuhta, J., H. Antikainen, J. Hjort, A. Helm & J. Heino, 2020. Current climate overrides historical effects on species richness and range size of freshwater plants in Europe and North America. Journal of Ecology. https://doi.org/10.1111/1365-2745.13356.

    Article  Google Scholar 

  • Alahuhta, J., M. Lindholm, L. Baastrup-Spohr, J. García-Girón, M. Toivanen, J. Heino & K. Murphy, 2021. Macroecology of macrophytes in the freshwater realm: patterns, mechanisms and implications. Aquatic Botany 168: 103325.

    Article  Google Scholar 

  • Ali, M. M., A. Hamad, I. V. Springuel & K. J. Murphy, 1995. Environmental factors affecting submerged macrophyte communities in regulated waterbodies in Egypt. Archiv für Hydrobiologie 133: 107–128.

    Article  Google Scholar 

  • Ali, M. M., K. J. Murphy & J. Langendorff, 1999. Interrelationships of river ship traffic with aquatic plants in the River Nile, Upper Egypt. Hydrobiologia 415: 93–100.

    Article  Google Scholar 

  • Anufriieva, E. V. & N. V. Shadrin, 2018. Extreme hydrological events destabilize aquatic ecosystems and open doors for alien species. Quaternary International 475: 11–15.

    Article  Google Scholar 

  • Azan, S., M. Bardecki & A. E. Laursen, 2015. Invasive aquatic plants in the aquarium and ornamental pond industries: a risk assessment for southern Ontario (Canada). Weed Research 55: 249–259. https://doi.org/10.1111/wre.12135.

    Article  Google Scholar 

  • Bakker, E. S., K. A. Wood, J. F. Pagès, C. G. F. Veen, M. J. A. Christianen, L. Santamaría, B. A. Nolet & S. Hilt, 2016. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquatic Botany 135: 18–36.

    Article  Google Scholar 

  • Bansal, S., S. C. Lishawa, S. Newman, B. A. Tangen, D. Wilcox, D. Albert, M. J. Anteau, M. J. Chimney, R. L. Cressey, E. DeKeyser, K. J. Elgersma, S. A. Finkelstein, J. Freeland, R. Grosshans, P. E. Klug, D. J. Larkin, B. A. Lawrence, G. Linz, J. Marburger, G. Noe, C. Otto, N. Reo, J. Richards, C. Richardson, L. R. Rodgers, A. J. Schrank, D. Svedarsky, S. Travis, N. Tuchman & L. Windham-Myers, 2019. Typha (Cattail) invasion in North American wetlands: biology, regional problems, impacts, ecosystem services, and management. Wetlands 39: 645–684. https://doi.org/10.1007/s13157-019-01174-7.

    Article  Google Scholar 

  • Barnes, M. A., C. L. Jerde, D. Keller, W. L. Chadderton, J. G. Howeth & D. M. Lodge, 2013. Viability of aquatic plant fragments following desiccation. Invasive Plant Science and Management 6: 320–325.

    Article  Google Scholar 

  • Barrat-Segretain, M. H., 1996. Strategies of reproduction, dispersion, and competition in river plants: a review. Vegetatio 123: 13–37.

    Article  Google Scholar 

  • Barrat-Segretain, M.-H., C. P. Henry & G. Bornette, 1999. Regeneration and colonization of aquatic plant fragments in relation to the disturbance frequency of their habitats. Archiv für Hydrobiologie 145: 111–127.

    Article  Google Scholar 

  • Batanouny, K. H. & A. M. El-Fiky, 1975. The water hyacinth (Eichhornia crassipes Solms) in the Nile system, Egypt. Aquatic Botany 1: 243–252. https://doi.org/10.1016/0304-3770(75)90025-X.

    Article  Google Scholar 

  • BirdLife International, 2021. Species factsheet: Anser canagicus. IUCN Red List for Birds. http://www.birdlife.org.

  • Bobrov, A. A., E. V. Chemeris, V. A. Filippova & S. Y. Maltseva, 2018. European pondweed in East Siberia: evidence of Potamogeton rutilus (Potamogetonaceae) in Yakutia (Asian Russia) with evaluation of current distribution and conservation status. Phytotaxa. https://doi.org/10.11646/phytotaxa.333.1.4.

    Article  Google Scholar 

  • Boedeltje, G., J. P. Bakker, A. Ten Brinke, J. M. Van Groenendael & M. Soesbergen, 2004. Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. Journal of Ecology 92: 786–796. https://doi.org/10.1111/j.0022-0477.2004.00906.x.

    Article  Google Scholar 

  • Boedeltje, G., T. Spanings, G. Flik, B. J. A. Pollux, F. A. Sibbing & W. C. E. P. Verberk, 2015. Effects of seed traits on the potential for seed dispersal by fish with contrasting modes of feeding. Freshwater Biology 60: 944–959. https://doi.org/10.1111/fwb.12550.

    Article  Google Scholar 

  • Bolpagni, R., 2021. Towards global dominance of invasive alien plants in freshwater ecosystems: the dawn of the Exocene? Hydrobiologia 848: 2259–2279. https://doi.org/10.1007/s10750-020-04490-w.

    Article  Google Scholar 

  • Borges, L. V. & I. Gonçalves Colares, 2007. Feeding habits of capybaras (Hydrochoerus hydrochaeris, Linnaeus 1766), in the Ecological Reserve of Taim (ESEC-Taim) – south of Brazil. Brazilian Archives of Biology and Technology 50: 409–416.

    Article  Google Scholar 

  • Boulos, L., 2009. Flora of Egypt checklist, Al Hadara Publishing, Cairo:

    Google Scholar 

  • Brazil Flora Group, 2021. Brazilian Flora 2020 Project – Projeto Flora do Brasil 2020. v393.274. Instituto de Pesquisas, Jardim Botanico do Rio de Janeiro. Dataset/Checklist. https://doi.org/10.15468/1mtkaw

  • Brouwer, E., L. Denys, E. C. H. E. T. Lucassen, M. Buiks & T. Onelinx, 2017. Competitive strength of Australian swamp stonecrop (Crassula helmsii) invading moorland pools. Aquatic Invasions. https://doi.org/10.3391/AI.2017.12.3.06.

    Article  Google Scholar 

  • Cabrera Walsh, G., M. C. Hernández, F. McKay, M. Oleiro, M. Guala & A. Sosa, 2017. Lessons from three cases of biological control of native freshwater macrophytes isolated from their natural enemies. Aquatic Ecosystem Health and Management 20: 353–360.

    Article  Google Scholar 

  • Calvo, C., R. P. Mormul, B. R. S. Figueiredo, E. R. Cunha, S. M. Thomaz & M. Meerhoff, 2019. Herbivory can mitigate, but not counteract, the positive effects of warming on the establishment of the invasive macrophyte Hydrilla verticillata. Biological Invasions 21: 59–66.

    Article  Google Scholar 

  • Carey, M., S. Sethi, S. Larsen & C. Rich, 2016. A primer on potential impacts, management priorities, and future directions for Elodea spp. in high latitude systems: learning from the Alaskan experience. Hydrobiologia. https://doi.org/10.1007/s10750-016-2767-x.

    Article  Google Scholar 

  • Ceschin, S., S. Abati, N. T. W. Ellwood & V. Zuccarello, 2018. Riding invasion waves: spatial and temporal patterns of the invasive Lemna minuta from its arrival to its spread across Europe. Aquatic Botany 150: 1–8.

    Article  Google Scholar 

  • Chappuis, E., E. Gacia & E. Ballesteros, 2014. Environmental factors explaining the distribution and diversity of vascular aquatic macrophytes in a highly heterogeneous Mediterranean region. Aquatic Botany 113: 72–82.

    Article  Google Scholar 

  • Charalambidou, I. & L. Santamaría, 2002. Waterbirds as endozoochorous dispersers of aquatic organisms: a review of experimental evidence. Acta Oecologica 23: 165–176.

    Article  Google Scholar 

  • Cheek, M., X. van der Burgt, A. Mornoh & A. Lebbie, 2017. Ledermanniella yiben sp. nov. (Podostemaceae), critically endangered at the proposed Yiben Reservoir, Sierra Leone. Kew Bulletin 72: 31.

    Article  Google Scholar 

  • Chen, L.-Y., G. W. Grimm, Q.-F. Wang & S. S. Renner, 2015. A phylogeny and biogeographic analysis for the Cape-Pondweed family Aponogetonaceae (Alismatales). Molecular Phylogenetics and Evolution 82: 111–117. https://doi.org/10.1016/j.ympev.2014.10.007.

    Article  PubMed  Google Scholar 

  • Chung, S. W., T. C. Hsu & Y. H. Chang, 2007. Acmella uliginosa (Swartz) Cassini (Asteraceae): a newly naturalized plant in Taiwan. Taiwania 52: 276–279.

    Google Scholar 

  • Clausen, P., B. A. Nolet, A. Fox & M. Klaassen, 2002. Long-distance endozoochorous dispersal of submerged macrophyte seeds by migratory waterbirds in northern Europe – a critical review of possibilities and limitations. Acta Oecologica 23: 191–203.

    Article  Google Scholar 

  • Coetzee, J. A., M. P. Hill & D. Schlange, 2009. Potential spread of the invasive plant Hydrilla verticillata in South Africa based on anthropogenic spread and climate suitability. Biological Invasions 11: 801–812.

    Article  Google Scholar 

  • Coetzee, J. A., M. P. Hill, M. J. Byrne & A. Bownes, 2011. A review of the biological control programmes on Eichhornia crassipes (Mart.) Solms (Pontederiaceae), Salvinia molesta D.S. Mitch. (Salviniaceae), Pistia stratiotes L. (Araceae), Myriophyllum aquaticum (Vell.) Verdc. (Haloragaceae) and Azolla filiculoides Lam. (Azollaceae) in South Africa. African Entomology 19: 451–468.

    Article  Google Scholar 

  • Cook, C. D. K., 1985. Range extensions of aquatic vascular plant species. Journal of Aquatic Plant Management 23: 1–6.

    Google Scholar 

  • Cook, C. D. K., 1987. Dispersion in aquatic and amphibious vascular plants. In Crawford, R. M. M. (ed), Plant Life in Aquatic and Amphibious Habitats Blackwell Scientific Publications, Oxford: 179–190.

    Google Scholar 

  • Coughlan, N. E., T. C. Kelly & M. A. K. Jansen, 2015. Mallard duck (Anas platyrhynchos) – mediated dispersal of Lemnaceae: a contributing factor in the spread of invasive Lemna minuta? Plant Biology 17(Suppl. 1): 108–114.

    Article  PubMed  Google Scholar 

  • Coughlan, N. E., T. C. Kelly, J. Davenport & M. A. K. Jansen, 2017a. Up, up and away: bird-mediated ectozoochorous dispersal between aquatic environments. Freshwater Biology 62: 631–648.

    Article  Google Scholar 

  • Coughlan, N. E., T. C. Kelly & M. A. K. Jansen, 2017b. “Step by step”: high frequency short-distance epizoochorous dispersal of aquatic macrophytes. Biological Invasions 19: 625–634.

    Article  Google Scholar 

  • de Sousa, W. T. Z., S. M. Thomaz & K. J. Murphy, 2009. Environmental predictors of exotic Hydrilla verticillata L.f. Royle and native Egeria najas Planch. occurrence in a sub-tropical river floodplain: the upper River Paraná, Brazil. Hydrobiologia 632: 65–78.

    Article  Google Scholar 

  • De’ath, G., 2007. Boosted trees for ecological modeling and prediction. Ecology 88: 243–251.

    Article  PubMed  Google Scholar 

  • Denys, L., J. Packet, W. Jambon & K. Scheers, 2014. Dispersal of the non-native invasive species Crassula helmsii (Crassulaceae) may involve seeds and endozoochorous transport by birds. New Journal of Botany 4: 104–106. https://doi.org/10.1179/2042349714Y.0000000046.

    Article  Google Scholar 

  • Derksen, D. V., K. S. Bollinger, D. H. Ward, J. S. Sedinger & Y. Miyabayashi, 1996. Black brant from Alaska staging and wintering in Japan. Condor 98: 653–657.

    Article  Google Scholar 

  • Dieffenbacher-Krall, A. C. & G. L. Jacobson Jr., 2001. Post-glacial changes in the geographic ranges of certain aquatic vascular aquatic plants in North America. Proceedings of the Royal Irish Academy 101B: 79–84.

    Google Scholar 

  • Efremov, A., Y. Bolotova, A. Mesterházy & C. Toma, 2018. Features of distribution of Hydrilla verticillata (L. fil.) Royle (Hydrocharitaceae) in North Eurasia. Journal of Coastal Research 34: 675–686.

    Article  Google Scholar 

  • Elith, J., J. R. Leathwick & T. Hastie, 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–813.

    Article  CAS  PubMed  Google Scholar 

  • Fernández, F. F., B. Schneider & F. Zilli, 2019. Factors driving seed dispersal in a Neotropical river-floodplain system. Acta Botanica Brasilica. https://doi.org/10.1590/0102-33062019abb0065.

    Article  Google Scholar 

  • Figuerola, J. & A. J. Green, 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47: 483–494.

    Article  Google Scholar 

  • Figuerola, J., I. Charalambidou, L. Santamaría & A. J. Green, 2010. Internal dispersal of seeds by waterfowl: effect of seed size on gut passage time and germination patterns. Naturwissenschaften 97: 555–565.

    Article  CAS  PubMed  Google Scholar 

  • Fillios, M. A. & P. S. C. Taçon, 2016. Who let the dogs in? A review of the recent genetic evidence for the introduction of the dingo to Australia and implications for the movement of people. Journal of Archaeological Science: Reports 7: 782–792. https://doi.org/10.1016/j.jasrep.2016.03.001.

    Article  Google Scholar 

  • Fleming, J. P. & E. D. Dibble, 2014. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746: 23–37.

    Article  Google Scholar 

  • Fleming, J. P., E. D. Dibble, J. D. Madsen & R. M. Wersal, 2015. Investigation of Darwin’s naturalization hypothesis in invaded macrophyte communities. Biological Invasions 17: 1519–1531.

    Article  Google Scholar 

  • Florêncio, F. M., M. J. Silveira & S. M. Thomaz, 2021. Niche differentiation between a native and an invasive species of submersed macrophyte in a subtropical reservoir. Acta Botanica Brasileira 3: 132–139.

    Article  Google Scholar 

  • Franceschini, C., K. J. Murphy, I. Moore, M. P. Kennedy, S. F. Martínez, F. Willems, M. L. De Wysiecki & H. Sichingabula, 2020a. Impacts on freshwater macrophytes produced by small invertebrate herbivores: Afrotropical and Neotropical wetlands compared. Hydrobiologia. https://doi.org/10.1007/s10750-020-04360-5.

    Article  Google Scholar 

  • Franceschini, C., K. J. Murphy, M. P. Kennedy, S. F. Martínez, F. Willems & H. Sichingabula, 2020b. Are invertebrate herbivores of freshwater macrophytes scarce in the tropics? Aquatic Botany 167: 103289.

    Article  Google Scholar 

  • Fu, H., G. Yuan, E. Jeppesen, D. Ge, W. Li, D. Zou, Z. Huang, A. Wu & Q. Liu, 2019. Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Science of the Total Environment 687: 206–217.

    Article  CAS  PubMed  Google Scholar 

  • Gaevskaya, N. S., 1966. The Role of Higher Aquatic Plants in the Nutrition of Animals in Fresh Water. USSR Academy of Sciences. All-Union Hydrobiological Society, Nauka, Moscow:, 328.

    Google Scholar 

  • García-Álvarez, A., C. H. A. Van Leeuwen, C. J. Luque, A. Hussner, A. Vélez-Martín, A. Pérez-Vázquez, A. J. Green & E. M. Castellanos, 2015. Internal transport of alien and native plants by geese and ducks: an experimental study. Freshwater Biology 60: 1316–1329. https://doi.org/10.1111/fwb.12567.

    Article  Google Scholar 

  • Gaskin, J. F., J. Andreas, B. J. Grewell, P. Haefliger & N. E. Harms, 2021. Diversity and origins of Butomus umbellatus (flowering rush) invasion in North America. Aquatic Botany 173: 103400. https://doi.org/10.1016/j.aquabot.2021.103400.

    Article  Google Scholar 

  • Gay, P. A. & L. Berry, 1959. The water hyacinth: a new problem on the Nile. The Geographical Journal 125: 89–91.

    Article  Google Scholar 

  • Gervazoni, P., A. Sosa, C. Franceschini, J. Coetzee, A. Fallhauser, D. Fuentes-Rodriguez, A. Agustina Martínez & M. Hill, 2020. The alien invasive yellow flag (Iris pseudacorus L.) in Argentinian wetlands: assessing geographical distribution through different data sources. Biological Invasions 11: 3183–3193. https://doi.org/10.1007/s10530-020-02331-4.

    Article  Google Scholar 

  • Gillard, M., G. Thiébaut & B. Leroy, 2017. Present and future distribution of three aquatic plant taxa across the world: decreases in native and increases in invasive ranges. Biological Invasions 19: 2159–2170.

    Article  Google Scholar 

  • Green, A. J. & M. I. Sánchez, 2003. Spatial and temporal variation in the diet of Marbled Teal Marmaronetta angustirostris in the Western Mediterranean. Bird Study 50: 153–160.

    Article  Google Scholar 

  • Green, A. J., K. M. Jenkins, D. Bell, P. J. Morris & R. T. Kingsford, 2008. The potential role of waterbirds in dispersing invertebrates and plants in arid Australia. Freshwater Biology 53: 380–392.

    Google Scholar 

  • Green, A. J., M. Soons, A.-L. Brochet & E. Kleyheeg, 2016. Dispersal of plants by waterbirds. In Şekercioğlu, C. H., D. G. Wenny & C. J. Whelan (eds), Why Birds Matter: Avian Ecological Function and Ecosystem Services University of Chicago Press, Chicago: 147–194.

    Google Scholar 

  • Greenwell, B., B. Boehmke & J. Cunningham, 2018. gbm: generalized boosted regression models. R Package Version 2(1): 5.

    Google Scholar 

  • Grime, J. P., 1979. Plant Strategies and Vegetation Processes, Wiley, Chichester:

    Google Scholar 

  • Gross, E. M., H. Groffier, C. Pestelard & A. Hussner, 2020. Ecology and environmental impact of Myriophyllum heterophyllum, an aggressive invasive in European waterways. Diversity 12: 127. https://doi.org/10.3390/d12040127.

    Article  Google Scholar 

  • Grutters, B. M. C., E. M. Gross & E. S. Bakker, 2016. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release. Hydrobiologia 778: 209–220.

    Article  CAS  Google Scholar 

  • Gunn, I. D. M., S. Meis, B. M. Spears & S. C. Maberly, 2014. Assessing the responses of aquatic macrophytes to the application of a lanthanum modified bentonite clay, at Loch Flemington, Scotland, UK. Hydrobiologia 737: 309–320. https://doi.org/10.1007/s10750-013-1765-5.

    Article  CAS  Google Scholar 

  • Heidbüchel, P., M. Sachs, N. Hamzehian & A. Hussner, 2020. Go with the flow: fragment retention patterns shape the vegetative dispersal of aquatic plants in lowland streams. Freshwater Biology 65: 1936–1949. https://doi.org/10.1111/fwb.13590.

    Article  CAS  Google Scholar 

  • Heleno, R. & P. Vargas, 2015. How do islands become green? Global Ecology and Biogeography 24: 518–526. https://doi.org/10.1111/geb.12273.

    Article  Google Scholar 

  • Hofstra, D., J. Schoelynck, J. Ferrell, J. Coetzee, M. de Winton, O. Bickel, P. Champion, J. Madsen, E. S. Bakker, S. Hilt, F. Matheson, M. Netherland & E. M. Gross, 2020. On the move: new insights on the ecology and management of native and alien macrophytes. Aquatic Botany. https://doi.org/10.1016/j.aquabot.2019.103190.

    Article  Google Scholar 

  • Howard, G., M.A. Hyde & M.G. Bingham, 2016. Alien Limnobium laevigatum (Humb., Bonpl. ex Willd.) Heine (Hydrocharitaceae) becoming prevalent in Zimbabwe and Zambia. BioInvasions Records 5: 221–225. 29:1658–1665

  • Howard-Williams, C. & J. Davies, 1988. The invasion of Lake Taupo by the submerged water weed Lagarosiphon major and its impact on the native flora. New Zealand Journal of Ecology 11: 13–19.

    Google Scholar 

  • Humair, F., L. Humair, F. Kuhn & C. Kueffer, 2015. E-commerce trade in invasive plants. Conservation Biology 29: 1658–1665.

    Article  PubMed  Google Scholar 

  • Hussner, A., P. Heidbüchel, J. Coetzee & E. M. Gross, 2021. From introduction to nuisance growth: a review of traits of alien aquatic plants which contribute to their invasiveness. Hydrobiologia 848: 2119–2151. https://doi.org/10.1007/s10750-020-04463-z.

    Article  Google Scholar 

  • Jaca, T. & V. Mkhize, 2015. Distribution of Iris pseudacorus (Linnaeus, 1753) in South Africa. Biological Invasions 4: 249–253. https://doi.org/10.3391/bir.2015.4.4.03.

    Article  Google Scholar 

  • Jacobs, S. W. L. & K. L. Wilson, 1996. A biogeographical analysis of the freshwater plants of Australasia. Australian Systematic Botany 9: 169–183.

    Article  Google Scholar 

  • Jefferies, R. L., R. F. Rockwell & K. F. Abraham, 2003. The embarrassment of riches: agricultural food subsidies, high goose numbers, and loss of Arctic wetlands – a continuing saga. Environmental Reviews 11: 193–232. https://doi.org/10.1139/A04-002.

    Article  Google Scholar 

  • Jensen, J.-K., T.-L. Flemming & S. Hammer, 2022. pers. comm. Supplement to Faroe Islands botanical list with 64 species including rare, new and potentially invasive species with comments. Tórshavn, Faroe Islands.

  • Johansson, M. & C. Nilsson, 1993. Hydrochory, population dynamics and distribution of the clonal aquatic plant Ranunculus lingua. Journal of Ecology 81: 81–91.

    Article  Google Scholar 

  • Jones, P. E., S. Consuegra, L. Börger, J. Jones & C. Garcia de Leaniz, 2020. Impacts of artificial barriers on the connectivity and dispersal of vascular macrophytes in rivers: a critical review. Freshwater Biology 65: 1165–1180. https://doi.org/10.1111/fwb.13493.

    Article  Google Scholar 

  • Kennedy, M. P., P. Lang, J. Tapia Grimaldo, S. Varandas Martins, A. Bruce, A. Hastie, S. Lowe, M. M. Ali, J. Briggs, H. Sichingabula & K. J. Murphy, 2015. Environmental drivers of aquatic macrophyte communities in southern tropical African rivers: Zambia as a case study. Aquatic Botany 124: 19–28.

    Article  Google Scholar 

  • Kennedy, M. P., P. Lang, J. Tapia Grimaldo, S. Varandas Martins, A. Bruce, I. Moore, R. Taubert, C. Macleod-Nolan, S. McWaters, J. Briggs, S. Lowe, K. Saili, H. Sichingabula, F. Willems, H. Dallas, S. Morrison, C. Franceschini, F. Bottino & K. J. Murphy, 2017. Niche-breadth of freshwater macrophytes occurring in tropical southern African rivers predicts species global latitudinal range. Aquatic Botany 136: 121–130.

    Article  Google Scholar 

  • Kleyheeg, E., B. A. Nolet, S. Otero-Ojea & M. B. Soons, 2018. A mechanistic assessment of the relationship between gut morphology and endozoochorous seed dispersal by waterfowl. Ecology and Evolution 8: 10857–10867. https://doi.org/10.1002/ece3.4544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kodela, P. G., 2006. Lysimachia (Myrsinaceae) in New South Wales. Telopea 11: 147–154.

    Article  Google Scholar 

  • Kozhova, O. M. & L. A. Izhboldina, 1993. Spread of Elodea canadensis in Lake Baikal. Hydrobiologia 259: 203–211.

    Article  Google Scholar 

  • Kuehne, L. M., M. C. Hicks, B. Wamsley & J. D. Olden, 2021. Twenty year contrast of non-native parrotfeather distribution and abundance in an unregulated river. Hydrobiologia. https://doi.org/10.1007/s10750-021-04745-0.

    Article  Google Scholar 

  • Laczkó, L., B. A. Lukács, A. Mesterházy, V. A. Molnár & G. Sramkó, 2019. Is Nymphaea lotus var. thermalis a tertiary relict in Europe? Aquatic Botany 155: 1–4.

    Article  Google Scholar 

  • Lang, P. & J. Krokowski, 2014. The solitary planktonic chrysophyte Dinobryon faculiferum: an alga species typically restricted to brackish environments, found inhabiting a freshwater loch in northern Scotland. Glasgow Naturalist 26: 109–110.

    Google Scholar 

  • Leach, J. & H. Dawson, 2000. Is resistance futile? The battle against Crassula helmsii. Journal of Practical Ecology and Conservation 4: 7–17.

    Google Scholar 

  • Lehikoinen, A., K. Jaatinen, A. V. Vähätalo, P. Clausen, O. Crowe, B. Deceuninck, R. Hearn, C. A. Holt, M. Hornman, V. Keller, L. Nilsson, T. Langendoen, I. Tománková, J. Wahl & A. D. Fox, 2013. Rapid climate driven shifts in wintering distributions of three common waterbird species. Global Change Biology 19: 2071–2081. https://doi.org/10.1111/gcb.12200.

    Article  PubMed  Google Scholar 

  • Les, D. H., 1986. The phytogeography of Ceratophyllum demersum and C. echinatum (Ceratophyllaceae) in glaciated North America. Canadian Journal of Botany 64: 498–509.

    Article  Google Scholar 

  • Les, D. H. & L. J. Mehrhoff, 1999. Introduction of nonindigenous aquatic vascular plants in southern New England: a historical perspective. Biological Invasions 1: 281–300.

    Article  Google Scholar 

  • Les, D. H., D. J. Crawford, R. T. Kimball, M. L. Moody & K. E. Landolt, 2003. Biogeography of discontinuously distributed hydrophytes: a molecular appraisal of intercontinental disjunctions. International Journal of Plant Science 164: 917–932.

    Article  Google Scholar 

  • Les, D. H., E. L. Peredo, U. M. King, L. K. Benoit, N. P. Tippery, C. J. Ball & R. K. Shannon, 2015. Through thick and thin: cryptic sympatric speciation in the submersed genus Najas (Hydrocharitaceae). Molecular Phylogenetics and Evolution 82: 15–30. https://doi.org/10.1016/j.ympev.2014.09.022.

    Article  PubMed  Google Scholar 

  • Li, Z.-Z., S. Lehtonen, K. Martins, A. W. Gichira, S. Wu, W. Li, G.-W. Hu, Y. Liu, C.-Y. Zou, Q.-F. Wang & J.-M. Chen, 2020. Phylogenomics of the aquatic plant genus Ottelia (Hydrocharitaceae): implications for historical biogeography. Molecular Phylogenetics and Evolution 152: 106939. https://doi.org/10.1016/j.ympev.2020.106939.

    Article  PubMed  Google Scholar 

  • Lobato-de Magalhães, T., K. Murphy, A. Efremov, V. Chepinoga, T. Davidson & E. Molina-Navarro, 2021. Ploidy state of aquatic macrophytes: global distribution and drivers. Aquatic Botany 173: 103417. https://doi.org/10.1016/j.aquabot.2021.103417.

    Article  Google Scholar 

  • Lobato‑de Magalhães, T., K. Murphy, J. Tapia Grimaldo, T. Davidson, E. Molina-Navarro, J.A. De-Nova & A. Efremov, 2022. Global hotspots of endemicity, rarity and speciation of aquatic macrophytes [unpublished manuscript]. Faculty of Natural Sciences, Universidad Autónoma de Querétaro.

  • Louback-Franco, N., M. S. Dainez-Filho, D. C. Souza & S. M. Thomaz, 2020. A native species does not prevent the colonization success of an introduced submerged macrophyte, even at low propagule pressure. Hydrobiologia 847: 1619–1629. https://doi.org/10.1007/s10750-019-04116-w.

    Article  Google Scholar 

  • Lovas-Kiss, A., B. Vizi, O. Vincze, A. Molnar & A. J. Green, 2018. Endozoochory of aquatic ferns and angiosperms by mallards in Central Europe. Journal of Ecology 106: 1714–1723.

    Article  Google Scholar 

  • Martin, G. & J. A. Coetzee, 2011. Pet stores, aquarists and the internet trade as modes of introduction and spread of invasive macrophytes in South Africa. Water SA 37: 371–380.

    Article  Google Scholar 

  • Mikulyuk, A., S. Sharma, S. van Egeren, E. Erdmann, M. E. Nault & J. Hauxwell, 2011. The relative role of environmental, spatial, and land-use patterns in explaining aquatic macrophyte community composition. Canadian Journal of Fisheries and Aquatic Sciences 68: 1778–1789.

    Article  Google Scholar 

  • Milne, J. M., P. Lang & K. J. Murphy, 2007. Competitive interactions between Salvinia auriculata Aubl., Limnobium laevigatum (Humb. and Bonpl. ex Willd.) Heine, and other free-floating aquatic macrophytes under varying nutrient availability. Fundamental and Applied Limnology 169: 169–176.

    Article  Google Scholar 

  • Milne, J. M., K. J. Murphy & S. M. Thomaz, 2008. Estudos experimentais dos impactos causados da atividade de pastagem em áreas de pasto na várzea do Alto Rio Paraná. Cadernos da Biodiversidade 5: 4–9.

    Google Scholar 

  • Morueta-Holme, N., B. J. Enquist, B. J. McGill, B. Boyle, P. M. Jørgensen, J. E. Ott, R. K. Peet, I. Símová, L. L. Sloat, B. Thiers, C. Violle, S. K. Wiser, S. Dolins, J. C. Donoghue, N. J. B. Kraft, J. Regetz, M. Schildhauer, N. Spencer & J.-C. Svenning, 2013. Habitat area and climate stability determine geographical variation in plant species range sizes. Ecology Letters 16: 1446–1454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy, K. J., 1988. Aquatic weed problems and their management: a review. I. The worldwide scale of the aquatic weed problem. Crop Protection 7: 232–248.

    Article  Google Scholar 

  • Murphy, K. J. & J. W. Eaton, 1983. The effects of pleasure-boat traffic on macrophyte growth in canals. Journal of Applied Ecology 20: 713–729.

    Article  Google Scholar 

  • Murphy, K. J., B. Rørslett & I. Springuel, 1990. Strategy analysis of submerged lake macrophyte communities: an international example. Aquatic Botany 36: 303–323.

    Article  Google Scholar 

  • Murphy, K. J., N. J. Willby & J. W. Eaton, 1995. Ecological impacts and management of boat traffic on navigable inland waterways. In Harper, D. & A. J. D. Ferguson (eds), The Ecological Basis for River Management Wiley, Chichester: 427–442.

    Google Scholar 

  • Murphy, K., A. Efremov, T. Davidson, E. Molina-Navarro, K. Fidanza, T. C. Crivelari Betiol, P. Chambers, J. Tapia Grimaldo, S. Varandas Martins, I. Springuel, M. Kennedy, R. Mormul, E. Dibble, D. Hofstra, B. A. Lukács, D. Gebler, L. Båstrup-Spohr & J. Urrutia Estrada, 2019. World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany. https://doi.org/10.1016/j.aquabot.2019.06.006.

    Article  Google Scholar 

  • Murphy, K., P. Carvalho, A. Efremov, J. Tapia Grimaldo, E. Molina-Navarro, T. A. Davidson & S. M. Thomaz, 2020. Latitudinal variation in global range-size of aquatic macrophyte species shows evidence for a Rapoport effect. Freshwater Biology 65: 1622–1640. https://doi.org/10.1111/fwb.13528.

    Article  CAS  Google Scholar 

  • Murton, R. K. & J. Kear, 1978. Photoperiodism in waterfowl: phasing of breeding cycles and zoogeography. Journal of Zoology (London) 186: 243–283.

    Article  Google Scholar 

  • Musilová, Z., P. Musil, J. Zouhar, A. Šenkýřová, D. Pavón-Jordán & P. Nummi, 2022. Changes in wetland habitat use by waterbirds wintering in Czechia are related to diet and distribution changes. Freshwater Biology 67: 309–324. https://doi.org/10.1111/fwb.13842.

    Article  Google Scholar 

  • Nathan, R., F. M. Schurr, O. Spiegel, O. Steinitz, A. Trakhtenbrot & A. Tsoar, 2008. Mechanisms of long-distance seed dispersal. Trends in Ecology and Evolution 23: 638–647.

    Article  PubMed  Google Scholar 

  • Neiff, J. J., S. L. Casco, E. K. A. Mari, J. A. Di Rienzo & A. S. G. Poi, 2014. Do aquatic plant assemblages in the Paraná River change along the river’s length? Aquatic Botany 114: 50–57. https://doi.org/10.1016/j.aquabot.2013.12.005.

    Article  Google Scholar 

  • Nies, G. & T. Reusch, 2005. Evolutionary divergence and possible incipient speciation in post-glacial populations of a cosmopolitan aquatic plant. Journal of Evolutionary Biology 18: 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, C., R. L. Brown, R. Jansson & D. M. Merritt, 2010. The role of hydrochory in structuring riparian and wetland vegetation. Biological Reviews 85: 837–858.

    PubMed  Google Scholar 

  • O’Hare, M. T., F. C. Aguiar, T. Asaeda, E. S. Bakker, P. A. Chambers, J. Clayton, A. Elger, T. T. Ferreira, E. M. Gross, I. D. M. Gunn, A. Gurnell, S. Hellsten, D. Hofstra, W. Li, S. Mohr, S. Puijalon, K. Szoszkiewicz, N. J. Willby & K. A. Wood, 2018. Plants in aquatic ecosystems: current trends and future directions. Hydrobiologia 812: 1–11.

    Article  Google Scholar 

  • Owens, C. S., R. M. Smart & G. O. Dick, 2008. Resistance of Vallisneria to invasion from Hydrilla fragments. Journal of Aquatic Plant Management 46: 113–116.

    Google Scholar 

  • Padgett, D. J., M. Joyal, S. Quirk, M. Laubi & T. D. Surasinghe, 2018. Evidence of aquatic plant seed dispersal by eastern painted turtles (Chrysemys picta picta) in Massachusetts, USA. Aquatic Botany 149: 40–45.

    Article  Google Scholar 

  • Peres, C. K., R. W. Lambrecht, D. A. Tavares & W. A. Chiba, 2018. Alien express: the threat of aquarium e-commerce introducing invasive aquatic plants in Brazil. Perspectives in Ecology and Conservation 16: 221–227.

    Article  Google Scholar 

  • Petruzzella, A., B. M. C. Grutters, S. M. Thomaz & E. S. Bakker, 2017. Potential for biotic resistance from herbivores to tropical and subtropical plant invasions in aquatic ecosystems. Aquatic Invasions 12: 343–353.

    Article  Google Scholar 

  • Petruzzella, A., T. A. S. S. R. Rodrigues, C. H. A. van Leeuwen, F. A. Esteve, M. P. Figueiredo-Barros & E. S. Bakker, 2020. Species identity and diversity effects on invasion resistance of tropical freshwater plant communities. Nature Scientific Reports 10: 5626. https://doi.org/10.1038/s41598-020-62660-1.

    Article  CAS  Google Scholar 

  • Pieterse, A. H. & K. J. Murphy (eds), 1993. Aquatic Weeds., 2nd ed. Oxford University Press, Oxford.

    Google Scholar 

  • Pollux, B.J.A., 2007. Plant dispersal in rivers: a mechanistic and molecular approach. PhD Thesis, University of Nijmegen.

  • Pollux, B. J. A., L. Santamaría & N. J. Ouborg, 2005. Differences in endozoochorous dispersal between aquatic plant species, with reference to plant population persistence in rivers. Freshwater Biology 50: 232–242.

    Article  Google Scholar 

  • Pulzatto, M. M., E. R. Cunha, M. S. Dainez-Filho & S. M. Thomaz, 2019. Association between the success of an invasive macrophyte, environmental variables and abundance of a competing native macrophyte. Frontiers in Plant Science 10: 514. https://doi.org/10.3389/fpls.2019.00514.

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team, 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org

  • Rasran, L., P. Hacker, R. Tumpold & K.-G. Bernhardt, 2021. Ecological niches of an introduced species Typha laxmannii and native Typha species in Austria. Aquatic Botany 174: 103430. https://doi.org/10.1016/j.aquabot.2021.103430.

    Article  Google Scholar 

  • Redekop, P., E. M. Gross, A. Nuttens, D. Hofstra, J. S. Clayton & A. Hussner, 2018. Hygraula nitens, the only native aquatic caterpillar in New Zealand, prefers an alien submerged plant. Hydrobiologia 812: 13–25.

    Article  CAS  Google Scholar 

  • Renner, S. S. & L.-B. Zhang, 2004. Biogeography of the Pistia clade (Araceae): based on chloroplast and mitochondrial DNA sequences and Bayesian divergence time inference. Systematic Biology 53: 422–432. https://doi.org/10.1080/10635150490445904.

    Article  PubMed  Google Scholar 

  • Reynolds, C. & G. S. Cumming, 2016a. Seed traits and bird species influence the dispersal parameters of wetland plants. Freshwater Biology 61: 1157–1170. https://doi.org/10.1111/fwb.12776.

    Article  Google Scholar 

  • Reynolds, C. & G. S. Cumming, 2016b. Seed dispersal by waterbirds in southern Africa: comparing the roles of ectozoochory and endozoochory. Freshwater Biology 61: 349–361. https://doi.org/10.1111/fwb.12709.

    Article  Google Scholar 

  • Reynolds, C., N. A. F. Miranda & G. S. Cumming, 2015. The role of waterbirds in the dispersal of aquatic alien and invasive species. Diversity and Distributions 2: 744–754. https://doi.org/10.1111/ddi.12334.

    Article  Google Scholar 

  • Riis, T. & K. Sand-Jensen, 2006. Dispersal of plant fragments in small streams. Freshwater Biology 51: 274–286.

    Article  Google Scholar 

  • Roberts, B. E., W. E. Harris, G. M. Hilton & S. J. Marsden, 2016. Taxonomic and geographic bias in conservation biology research: a systematic review of wildfowl demography studies. PLoS ONE 11: e0153908. https://doi.org/10.1371/journal.pone.0153908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Román-Palacios, C. & D. Moraga-Lopez, 2022. The origins of global biodiversity on land, sea and freshwater. Ecology Letters. https://doi.org/10.1111/ele.13999.

    Article  PubMed  Google Scholar 

  • Sandel, B., L. Arge, B. Dalsgaard, R. G. Davies, K. J. Gaston, W. J. Sutherland & J.-C. Svenning, 2011. The influence of late Quaternary climate-change velocity on species endemism. Science. https://doi.org/10.1126/science.1210173.

    Article  PubMed  Google Scholar 

  • Santamaría, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologia 23: 137–154.

    Article  Google Scholar 

  • Saulino, H. H., S. Trivinho-Strixino & R. M. Thompson, 2018. Herbivore functional traits and macroinvertebrate food webs have different responses to leaf chemical compounds of two macrophyte species in a tropical lake’s littoral zone. Aquatic Ecology 52: 1–12.

    Google Scholar 

  • Sawada, M., A. E. Viau & K. Gajewski, 2003. The biogeography of aquatic macrophytes in North America since the Last Glacial Maximum. Journal of Biogeography 30: 999–1017.

    Article  Google Scholar 

  • Sealy, S. G., J. Bédard, M. D. F. Udvardy & F. H. Fay, 1971. New records and zoogeographical notes on the birds of St. Lawrence Island, Bering Sea. Condor 73: 322–336.

    Article  Google Scholar 

  • Silva, G. G., A. J. Green, P. Hoffman, V. Weber, C. Stenert, A. Lovas-Kiss & L. Maltchik, 2020. Seed dispersal by neotropical waterfowl depends on bird species and seasonality. Freshwater Biology 66: 78–88. https://doi.org/10.1111/fwb.13615.

    Article  CAS  Google Scholar 

  • Slatyer, R. A., M. Hirst & J. P. Sexton, 2013. Niche-breadth predicts geographical range size: a general ecological pattern. Ecology Letters 16: 1104–1114.

    Article  PubMed  Google Scholar 

  • Soomers, H., D. Karssenberg, M. B. Soons, P. A. Verweij, J. T. Verhoeven & M. J. Wassen, 2013. Wind and water dispersal of wetland plants across fragmented landscapes. Ecosystems 16: 434–451.

    Article  Google Scholar 

  • Soons, M. B., A. L. Brochet, E. Kleyheeg & A. J. Green, 2016. Seed dispersal by dabbling ducks: an overlooked dispersal pathway for a broad spectrum of plant species. Journal of Ecology 104: 443–455.

    Article  Google Scholar 

  • Springuel, I. & K. J. Murphy, 1991. Euhydrophyte communities of the River Nile and its impoundments in Egyptian Nubia. Hydrobiologia 218: 35–47.

    Article  Google Scholar 

  • Stuckey, R. L., 1993. Phytogeographical outline of aquatic and wetland angiosperms in continental eastern North America. Aquatic Botany 44: 259–301.

    Article  Google Scholar 

  • Syroechkovski, E. E., C. Zöckler & E. Lappo, 1998. Status of Brent Goose in northwest Yakutia, East Siberia. British Birds 91: 565–572.

    Google Scholar 

  • Tapia Grimaldo, J., L. M. Bini, V. Landeiro, M. T. O’Hare, J. Caffrey, A. Spink, S. Varandas Martins, M. P. Kennedy & K. J. Murphy, 2016. Spatial and environmental drivers of macrophyte diversity and community composition in temperate and tropical calcareous rivers. Aquatic Botany 132: 49–61. https://doi.org/10.1016/j.aquabot.2016.04.006.

    Article  Google Scholar 

  • Tasker, S. J., A. Foggo & D. T. Bilton, 2022. Quantifying the ecological impacts of alien aquatic macrophytes: a global meta-analysis of effects on fish, macroinvertebrate and macrophyte assemblages. Freshwater Biology. https://doi.org/10.1111/fwb.13985.

    Article  Google Scholar 

  • Therneau, T., B. Atkinson & B. Ripley, 2019. rpart: recursive partitioning and regression trees. R package version 4.1-15.

  • Thiébaut, G., H. Rodriguez-Perez & O. Jambon, 2019. Reciprocal interactions between the native Mentha aquatica and the invasive Ludwigia hexapetala in an outdoor experiment. Aquatic Botany 157: 17–23. https://doi.org/10.1016/j.aquabot.2019.05.005.

    Article  Google Scholar 

  • Tryon, R., 1985. Fern speciation and biogeography. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences 86: 353–360.

    Article  Google Scholar 

  • Urrutia, J., P. Sánchez, A. Pauchard & E. Hauenstein, 2017. Plantas acuáticas invasoras presentes en Chile: Distribución, rasgos de vida y potencial invasor. Gayana Botanica 74: 147–157.

    Google Scholar 

  • van der Graaf, A. J., J. Stahl, A. Klimkowska, J. P. Bakker & R. H. Drent, 2006. Surfing on a green wave – how plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea 94: 567–577.

    Google Scholar 

  • Varandas Martins, S., J. Milne, S. M. Thomaz, S. McWaters, R. P. Mormul, M. P. Kennedy & K. Murphy, 2013. Human and natural drivers of changing macrophyte community dynamics over twelve years in a Neotropical riverine floodplain system. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 678–697.

    Google Scholar 

  • Viana, D. S., L. Santamaría, T. C. Micho & J. Figuerola, 2013a. Migratory strategies of waterbirds shape the continental-scale dispersal of aquatic organisms. Ecography 36: 430–438.

    Article  Google Scholar 

  • Viana, D. S., L. Santamaría, T. C. Micho & J. Figuerola, 2013b. Allometric scaling of long-distance dispersal by migratory birds. American Naturalist 181: 649–662.

    Article  PubMed  Google Scholar 

  • Volkova, P. A., N. G. Arutynyan, I. A. Shanzer, E. V. Chemeris & A. A. Bobrov, 2018. Genetic variability of Eurasian Nuphar species unravels possible routes in which freshwater plants could fill their wide areas. Aquatic Botany 145: 49–57.

    Article  CAS  Google Scholar 

  • VonBank, J. A., J. A. DeBoer, A. F. Casper & H. M. Hagy, 2018. Ichthyochory in a temperate river system by common carp (Cyprinus carpio). Journal of Freshwater Ecology 33: 83–96.

    Article  Google Scholar 

  • Wallace, G., 2005. The functional ecology of Potamogeton rutilus Wolfg. PhD Thesis, University of Glasgow.

  • Wasowicz, P., E. M. Przedpelska-Wasowicz, L. GuÐmundsdóttir & M. Tamayo, 2014. Vallisneria spiralis and Egeria densa (Hydrocharitaceae) in arctic and subarctic Iceland. New Journal of Botany 4: 85–89.

    Article  Google Scholar 

  • Wells, R., M. de Winton & J. S. Clayton, 1997. Successive macrophyte invasions within the submerged flora of Lake Tarawera, Central North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 31: 449–459.

    Article  CAS  Google Scholar 

  • Wingfield, R., K. J. Murphy & M. Gaywood, 2005. Lake habitat suitability for the rare European macrophyte Najas flexilis (Willd.) Rostk. & Schmidt. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 227–241.

    Article  Google Scholar 

  • Wood, K. A., M. T. O’Hare, C. McDonald, K. R. Searle, F. Daunt & R. A. Stillman, 2017. Herbivore regulation of plant abundance in aquatic ecosystems. Biological Reviews 92: 1128–1141. https://doi.org/10.1111/brv12272.

    Article  PubMed  Google Scholar 

  • Wubs, E. R. J., R. G. A. Fraaije, G. A. de Groot, H. J. Roy, A. G. Garssen, E. Kleyheeg, B. M. Raven & M. Soons, 2016. Going against the flow: a case for upstream dispersal and detection of uncommon dispersal events. Freshwater Biology 61: 580–595.

    Article  CAS  Google Scholar 

  • Zhang, Y., E. Jeppesen, X. Liu, B. Qin, K. Shi, Y. Zhou, S. M. Thomaz & J. Deng, 2017. Global loss of aquatic vegetation in lakes. Earth Science Reviews 173: 259–265.

    Article  CAS  Google Scholar 

  • Zub, L. M. & M. S. Prokopuk, 2020. The features of macrophyte invasions in the aquatic ecosystems of Middle Dnieper Region (Ukraine). Russian Journal of Biological Invasions 11: 108–117.

    Article  Google Scholar 

Download references

Acknowledgements

KM and JTG thank The British Council; CONACYT (Mexico); EC/ACP Science and Technology Programme (AFS/2009/219013); UK DfID DelPHE Programme; UK DEFRA Darwin Programme; and the Carnegie Trust for the Universities of Scotland for financial support for the field research which we undertook together across the world, during JTG’s PhD, that was highly rewarding scientifically in its own right, and also lead directly to this paper. We thank Rossano Bolpagni (University of Parma, Italy) and Janne Alahuhta (University of Oulu, Finland) for kindly commenting on the ms prior to submission.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Lobato‑de Magalhães.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human and/or animal participants

Although the data include information on animals, no direct work involving animal or human participants was carried out in this study.

Additional information

Handling editor: Andre Andrian Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobato‑de Magalhães, T., Murphy, K., Efremov, A. et al. How on Earth did that get there? Natural and human vectors of aquatic macrophyte global distribution. Hydrobiologia 850, 1515–1542 (2023). https://doi.org/10.1007/s10750-022-05107-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05107-0

Keywords

Navigation