Skip to main content

Advertisement

Log in

Assessment of cardinal temperatures of Egeria najas Planchon and its potential growth in a tropical floodplain lagoon

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Knowledge of the factors controlling the growth of macrophytes is essential to forecasting their spatial distribution and management. Based on growth rates (µ), this study describes the cardinal temperatures of Egeria najas, and evaluates its growth potential. Cultures at 4 temperatures (15, 20, 25 and 30 °C) were monitored for 48 days. Plant growth was fitted to a logistic model to obtain growth rates (µ15: 0.02; µ20: 0.05; µ25: 0.10; µ30: 0.04 day−1) which were used for parameterization of the optimal temperature function, obtaining the cardinal temperatures (lower basal temperature: 5 °C; optimum temperature: 26.3 °C; upper basal temperature: 31.7 °C). Using the water temperature of the Óleo Lagoon (a tropical floodplain lagoon from which E. najas was harvested) and optimum temperature function, the seasonal variation of the E. najas µ was calculated. This procedure predicted that the highest µ are expected between September and April (rainy season); however, on average, the µ was higher between April and October (dry season). Although the temperature is of paramount importance for the growth of this species (Q10: 4.39), in aquatic environments with small thermal variations, turbidity and nutrient scarcity can decisively interfere with the growth of submerged macrophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The four authors agree with the entire content (data and interpretation) of this manuscript and declare that the data are available under request.

References

  • Best, E. P. H., 1993. Models on metabolism of aquatic weeds and their application potential. In Pieterse, A. H. & K. J. Murphy (eds), Aquatic Weeds: The Ecology and Management of Nuisance Aquatic Vegetation Oxford University Press, Oxford: 254–273.

    Google Scholar 

  • Bianchini Jr., I., A.L. Bitar & M.B. Cunha-Santino, 2006. Crescimento de Egeria najas Planchon da lagoa do Óleo em condições laboratoriais. In: Santos, J.E., J.S.R. Pires & L.E. Moschini (eds.). Estudos Integrados em Ecossistemas: Estação Ecológica de Jataí. vol. 4. EdUFSCar, São Carlos: 99–111.

  • Bianchini, I., Jr., M. B. Cunha-Santino, J. A. M. Milan, C. J. Rodrigues & J. H. P. Dias, 2010. Growth of Hydrilla verticillata (L.f) Royle under controlled conditions. Hydrobiologia 644(1): 301–312. https://doi.org/10.1007/s10750-010-0191-1.

    Article  Google Scholar 

  • Bianchini, I., Jr., M. B. Cunha-Santino, J. A. M. Milan, C. J. Rodrigues & J. H. P. Dias, 2015. Model parametrization for the growth of tree submerged aquatic macrophytes. Journal of Aquatic Plant Management 53: 64–73.

    Google Scholar 

  • Bowie, G.L., W.B. Mills, D.B. Porcella, C.L. Campbell, J.R. Pagenkopf, G.L. Rupp, K.M. Johnson, P.W.H. Chan, S.A. Gherini & C.E. Chamberlin, 1985. Rates, constants, and kinetics formulations in surface water quality modeling. 2nd ed. U.S. Environmental Protection Agency, Athens (Georgia).

  • Camargo, A. F. M. & F. A. Esteves, 1995. Influence of water level variation on fertilization of an oxbow lake of Rio Mogi-Guaçu, state of São Paulo, Brazil. Hydrobiologia 299: 185–193. https://doi.org/10.1007/BF00767325.

    Article  CAS  Google Scholar 

  • Carr, G. M., H. C. Duthie & W. D. Taylor, 1997. Models of aquatic plant productivity: a review of the factors that influence growth. Aquatic Botany 59: 195–215. https://doi.org/10.1016/S0304-3770(97)00071-5.

    Article  Google Scholar 

  • Chapra, S. C. & R. P. Canale, 2010. Numerical Methods for Engineers, 6th ed. McGraw-Hill, New York:

    Google Scholar 

  • Climatempo, 2022. Climatologia e histórico de previsão do tempo em Luíz Antônio, BR. https://www.climatempo.com.br/climatologia/2377/luizantonio-sp

  • Cook, C. D. K. & K. Urmi-Köning, 1984. A revision of the genus Egeria (Hydrocharitaceae). Aquatic Botany 19: 73–96. https://doi.org/10.1016/0304-3770(84)90009-3.

    Article  Google Scholar 

  • Cordeiro, P. F., F. F. Goulart, D. R. Macedo, M. C. S. Campos & S. R. Castro, 2020. Modeling of the potential distribution of Eichhornia crassipes on a global scale: risks and threats to water ecosystems. Revista Ambiente & Água 15(2): 2421. https://doi.org/10.4136/ambi-agua.2421.

    Article  Google Scholar 

  • Cunha-Santino, M. B., A. T. Fushita, A. C. Peret & I. Bianchini Jr., 2016. Morphometry and retention time as forcing functions to establishment and maintenance of aquatic macrophytes in a tropical reservoir. Brazilian Journal of Biology 76(3): 673–685. https://doi.org/10.1590/1519-6984.24214.

    Article  CAS  Google Scholar 

  • DAEE, 2022. Departamento de Águas e Energia Elétrica. Hidrologia. Banco de Dados Hidrológicos. http://www.hidrologia.daee.sp.gov.br/

  • Davidson, E. A. & I. A. Janssens, 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165–173. https://doi.org/10.1038/nature04514.

    Article  CAS  PubMed  Google Scholar 

  • Duarte, C. M., D. Planas & J. Peñuelas, 1994. Macrophytes, taking control of ancestral home. In Margalef, R. (ed), Limnology Now: A Paradigm of Planetary Problems Elsevier, Amsterdam: 59–79.

    Google Scholar 

  • Florêncio, F. M., D. C. Alves, F. M. Lansac-Tôha, M. J. Silveira & S. M. Thomaz, 2021. The success of the invasive macrophyte Hydrilla verticillata and its interactions with the native Egeria najas in response to environmental factors and plant abundance in a subtropical reservoir. Aquatic Botany 175: 103432. https://doi.org/10.1016/j.aquabot.2021.103432.

    Article  Google Scholar 

  • Fylstra, D., L. Lasdon, S. J. Watson & A. Waren, 1998. Design and use of the Microsoft Excel solver. Interfaces 28: 29–55. https://doi.org/10.1287/inte.28.5.29.

    Article  Google Scholar 

  • Glibert, P. M., 1998. Interactions of top-down and bottom-up control in planktonic nitrogen cycling. Hydrobiologia 363: 1–12. https://doi.org/10.1023/A:1003125805822.

    Article  Google Scholar 

  • Golterman, H.L., R.S. Clymo & M.A.M. Ohstand, 1978. Methods for Chemical Analysis of Fresh Waters. IBP Handbook nº 8. Blackwell, Oxford.

  • Gutiérrez, E.L., E.F. Ruiz, E.G. Uribe & J.M. Martínez, 2001. Biomass and productivity of water hyacinth and their application in control programs. In: Julien, M.H. & M.P. Hill (eds.), Biological and Integrated Control of Water Hyacinth, Eichhornia crassipes, T. D. Center and Ding Jianqing ACIAR Proceedings 102: 110–119.

  • Hachol, J., E. Bondar-Nowakowska & E. Nowakowska, 2019. Factors influencing macrophyte species richness in unmodified and altered watercourses. Polish Journal of Environmental Studies 28(2): 609–622. https://doi.org/10.15244/pjoes/85220.

    Article  Google Scholar 

  • Hamilton, S. K., O. C. Souza & M. E. Coutinho, 1998. Dynamics of floodplain inundation in the alluvial fan of the Taquari River (Pantanal, Brazil). Verhandlungen Des Internationalen Verein Limnologie 26: 916–922. https://doi.org/10.1080/03680770.1995.11900852.

    Article  Google Scholar 

  • He, Y., N. Song, H.-L. Jiang & H-L., 2018. Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes. Environmental Science and Pollution Research 25: 9928–9939. https://doi.org/10.1007/s11356-018-1267-0.

    Article  CAS  PubMed  Google Scholar 

  • Hudon, C., S. Lalonde & P. Gagnon, 2000. Ranking the effects of site exposure, plant growth form, water depth, and transparency on aquatic plant biomass. Canadian Journal of Fisheries and Aquatic Sciences 57(S1): 31–42. https://doi.org/10.1139/f99-232.

    Article  Google Scholar 

  • Hussner, A. & R. Lösch, 2005. Alien aquatic plants in a thermally abnormal river and their assembly to neophyte-dominated macrophyte stands (River Erft. Northrhine-Westphalia). Limnologica 35: 18–30. https://doi.org/10.1016/j.limno.2005.01.001.

    Article  Google Scholar 

  • Hogland, D.R. & D.I. Arnon, 1950. The water culture method of growing plants without soil. California Agricultural Experimental Station Circular 374. University of California, Berkeley.

  • IPCC, 2022. Summary for policymakers. In: Pörtner, H.-O., D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller & A. Okem (eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge: 3–33. (doi:https://doi.org/10.1017/9781009325844.001)

  • Janssen, A. B. G., S. Hilt, S. Kosten, J. J. M. Klein, H. W. Paerl & D. B. Van de Waal, 2021. Shifting states, shifting services: Linking regime shifts to changes in ecosystem services of shallow lakes. Freshwater Biology 66: 1–12. https://doi.org/10.1111/fwb.13582.

    Article  Google Scholar 

  • Jetter, K.M., J. Madsen, D. Bubenheim & J. Dong, 2021. Bioeconomic modeling of floating aquatic weeds in the Sacramento–San Joaquin River Delta. Journal of Aquatic Plant Management 59s: 98–106.

  • Jones, H. G., 2014. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 3rd ed. Cambridge University Press, Cambridge:

    Google Scholar 

  • Jørgensen, S. E. & B. D. Fath, 2010. Fundamentals of Ecological Modelling. Application in Environmental Management and Research, 4th ed. Elsevier, Amsterdam:

    Google Scholar 

  • Kovalenko, K.E., F.M. Pelicice, L.B. Kats, J. Kotta & S.M. Thomaz, 2021. Aquatic invasive species: introduction to the Special Issue and dynamics of public interest. Hydrobiologia 848: 39–53. doi: https://doi.org/10.1007/s10750-021-04585-y

  • Kuar, M., M. Kumar, S. Sachdeva & S. K. Puri, 2018. Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Bioresource Technology 251: 390–402. https://doi.org/10.1016/j.biortech.2017.11.082.

    Article  CAS  Google Scholar 

  • Lacoul, P. & B. Freedman, 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14(2): 89–136. https://doi.org/10.1139/a06-001.

    Article  Google Scholar 

  • Langmuir, D., 1997. Aqueous Environmental Geochemistry, Prentice Hall, Upper Saddle River:

    Google Scholar 

  • Lasaga, A. C., 1981. Transition state theory. In Lasaga, A. C. & R. J. Kirkpatrick (eds), Kinetics of Geochemical Processes Reviews in Mineralogy Mineralogy American Society, Washington DC: 1–68.

    Chapter  Google Scholar 

  • Machado, R., I. Bianchini Jr. & M. B. Cunha-Santino, 2020. Temperature and turbidity as drive forces to the growth of Egeria densa (Planchon) under to controlled conditions. Aquatic Botany 164: 103234. https://doi.org/10.1016/j.aquabot.2020.103234.

    Article  Google Scholar 

  • Madsen, J. D., 1998. Overview of the ecological assessment technology area. Journal of Aquatic Plant Management 36: 25–27.

    Google Scholar 

  • Madsen, J.D. & C.M. Morgan, 2021. Water temperature controls the growth of waterhyacinth and South American sponge plant. Journal of Aquatic Plant Management 59s: 28–32.

  • Mackay, A. J., E. J. Muturi, M. P. Ward & B. Allan, 2016. Cascade of ecological consequences for West Nile virus transmission when aquatic macrophytes invade stormwater habitats. Ecological Applications 26(1): 219–232. https://doi.org/10.1890/15-0050.

    Article  PubMed  Google Scholar 

  • Mahujchariyawong, J. & S. Ikeda, 2001. Modelling of environmental phytoremediation in eutrophic river - the case of water hyacinth harvest in Tha-chin River, Thailand. Ecological Modelling 142: 121–134. https://doi.org/10.1016/S0304-3800(01)00283-6.

    Article  CAS  Google Scholar 

  • Mitchell, D. S., 1974. Water weeds. In Mitchell, D. S. (ed), Aquatic vegetation and its use and control UNESCO, Paris: 13–22.

    Google Scholar 

  • Neiff, J. J., 1999. El regimen de pulsos en ríos y grandes humedales de Sudamérica. In Malvarez, A. I. & P. Kandaus (eds), Tópicos sobre humedales subtropicales y templados de, Sudamerica Universidad de Buenos Aires, UNESCO, Montevideo: 97–146.

    Google Scholar 

  • Neiff, J.J. & M. Neiff, 2022. Pulso, software para análisis de fenómenos recurrentes. Dir. Nac. Derecho de Autor No 236164 (Argentina), Buenos Aires. http//www.neiff.com.ar.

  • Nygaard, G., 1958. On the productivity of the bottom vegetation in Lake Grane Langsø. Verhandlungen Des Internationalen Verein Limnologie 18: 144–155. https://doi.org/10.1080/03680770.1956.11895394.

    Article  Google Scholar 

  • Passerini, M. D., M. B. Cunha-Santino & I. Bianchini Jr., 2016. Oxygen availability and temperature as driving forces for decomposition of aquatic macrophytes. Aquatic Botany 130: 1–10. https://doi.org/10.1016/j.aquabot.2015.12.003.

    Article  CAS  Google Scholar 

  • Petracco, P., 2006. Efeito das variáveis abióticas na produção primária de Egeria najas e Utricularia breviscapa da lagoa do Óleo (Estação Ecológica de Jataí, Luiz Antônio-SP). Tese, Universidade Federal de São Carlos, São Carlos. https://repositorio.ufscar.br/handle/ufscar/1564

  • Petracco, P., M. M. Pezzato & Cunha-Santino & I. Bianchini Jr., 2022. Net photosynthetic rates of Egeria najas and Utricularia breviscapa changes directed by seasonal hydrological variations. Brazilian Journal of Botany 45(3): 1129–1138. https://doi.org/10.1007/s40415-022-00828-x.

    Article  Google Scholar 

  • Pezzato, M. M., 2007. Macrófitas aquáticas submersas: fotossíntese, crescimento e variáveis abióticas da água. Tese, Universidade Federal de São Carlos, São Carlos. https://repositorio.ufscar.br/handle/ufscar/1603

  • Reitsema, R. E., P. Meire & J. Schoelynck, 2018. The future of freshwater macrophytes in a changing world: dissolved organic carbon quantity and quality and its interactions with macrophytes. Frontiers in Plant Science 9: 629. https://doi.org/10.3389/fpls.2018.00629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shelford, V. E., 1913. Animal Communities in Temperate America, University of Chicago Press, Chicago:

    Book  Google Scholar 

  • Shugart, H. H., R. A. Goldstein, R. V. O’Neill & J. B. Mankin, 1974. TEEM: a terrestrial ecosystem energy model for forests. Oecologica Plantarum 9(3): 231–264.

    Google Scholar 

  • Silveira, M. J. & G. Thiébaut, 2017. Impact of climate warming on plant growth varied according to the season. Limnologica 65: 4–9. https://doi.org/10.1016/j.limno.2017.05.003.

    Article  Google Scholar 

  • Song, Y.-B., M.-Y. Zhou, Y.-L. Qin, J. H. C. Cornelissen & M. Dong, 2021. Nutrient effects on aquatic litter decomposition of free-floating plants are species dependent. Global Ecology and Conservation 30: 1748. https://doi.org/10.1016/j.gecco.2021.e01748.

    Article  Google Scholar 

  • Sousa, W. T. Z., S. M. Thomaz & K. J. Murphy, 2010. Response of native Egeria najas Planch. and invasive Hydrilla verticillata (L.f.) Royle to altered hydroecological regime in a subtropical river. Aquatic Botany 92: 40–48. https://doi.org/10.1016/j.aquabot.2009.10.002.

    Article  Google Scholar 

  • Strange, E. F., P. Landi, J. M. Hill & J. A. Coetzee, 2019. Modeling top-down and bottom-up drivers of a regime shift in invasive aquatic plant stable states. Frontiers in Plant Science 10: 889. https://doi.org/10.3389/fpls.2019.00889.

    Article  PubMed  PubMed Central  Google Scholar 

  • Straškraba, M., 1999. Self-organization, direct and indirect effects. In Tundisi, J. G. & M. Straškraba (eds), Theoretical Reservoir Ecology and Its Applications Backhuys Publishers, Leiden: 29–51.

    Google Scholar 

  • Verhofstad, M. J. J. M. & E. S. Bakker, 2019. Classifying nuisance submerged vegetation depending on ecosystem services. Limnology 20: 55–68. https://doi.org/10.1007/s10201-017-0525-z.

    Article  Google Scholar 

  • Wallenstein, M. D. & M. N. Weintraub, 2008. Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biology and Biochemistry 40: 2098–2106. https://doi.org/10.1016/j.soilbio.2008.01.024.

    Article  CAS  Google Scholar 

  • Weber, M. A., L. A. Wainger, N. E. Harms & G. M. Nesslage, 2021. The economic value of research in managing invasive hydrilla in Florida public lakes. Lake and Reservoir Management 37(1): 63–76. https://doi.org/10.1080/10402381.2020.1824047.

    Article  Google Scholar 

  • Wetzel, R. G., 1964. A comparative study of the primary productivity of higher aquatic plants - periphyton and phytoplankton in a large shallow lake. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie 49: 1–61. https://doi.org/10.1002/iroh.19640490102.

    Article  Google Scholar 

  • Wu, H., B. Hao, H. Jo & Y. Cai, 2021. Seasonality and species specificity of submerged macrophyte biomass in shallow lakes under the influence of climate warming and eutrophication. Frontiers in Plant Science 12: 678259. (doi: https://doi.org/10.3389/fpls.2021.678259)

  • Yarrow, M., V. H. Marín, M. Finlayson, A. Tironi, L. E. Delgado & F. Fisher, 2009. The ecology of Egeria densa Planchon (Liliopsida: Alismatales): a wetland ecosystem engineer? Revista Chilena de Historia Natural 82: 299–313. https://doi.org/10.4067/S0716-078X2009000200010.

    Article  Google Scholar 

  • Yoshida, L. L., L. S. A. Valletta, M. B. Cunha-Santino & I. Bianchini Jr., 2022. A proposal for the equivalence between the rates of net photosynthesis and growth rate constants for submerged aquatic plants. Hydrobiologia 849: 77–88. https://doi.org/10.1007/s10750-021-04711-w.

    Article  CAS  Google Scholar 

  • Zhang, P., A. Kuramae, C. H. A. Van Leeuwen, M. Velthuis, E. Van Donk, J. Xu & E. S. Bakker, 2020. Interactive effects of rising temperature and nutrient enrichment on aquatic plant growth, stoichiometry, and palatability. Frontiers in Plant Science 11: 58. https://doi.org/10.3389/fpls.2020.00058.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the scholarships (CNPq proc. nº 140406/2003-4; 306564/2020-0; CT-Hidro/CNPq, proc. nº 550188/2002-9; 140406/2003-4; Edital MCT/CNPq 02/2006—Universal; proc. nº 470527/2006-4).

Funding

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq proc. nº 140406/2003-4; 306564/2020-0; CT-Hidro/CNPq, proc. nº 550188/2002-9; 140406/2003-4; Edital MCT/CNPq 02/2006-Universal; proc. nº 470527/2006-4).

Author information

Authors and Affiliations

Authors

Contributions

IBJ and MBCS developed the math procedures. MMP, PP and MBCS participated in the design of the study, field surveys, experimental works, data analyses, and wrote the manuscript. MBCS and IBJ participated in the design of study, edited the manuscript, and secured the funding. All authors read and approved the final manuscript.

Corresponding author

Correspondence to I. Bianchini Jr..

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest or competing interests.

Additional information

Handling editor: Andre Andrian Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pezzato, M.M., Petracco, P., Cunha-Santino, M.B. et al. Assessment of cardinal temperatures of Egeria najas Planchon and its potential growth in a tropical floodplain lagoon. Hydrobiologia 850, 2127–2138 (2023). https://doi.org/10.1007/s10750-023-05224-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05224-4

Keywords

Navigation