Skip to main content

Advertisement

Log in

Concise review of green algal genus Ulva Linnaeus

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The green algal genus Ulva is widely distributed around all continents. Plants with both distromatic or monostromatic thalli now form a single taxon based on ITS rDNA and rbcL gene sequencing. Ulva is known to occupy several ecological niches including freshwater and marine (intertidal and subtidal) habitats, attributed to its tolerance to key determinants such as light, temperature, and salinity. The genus is perceived as model system to study life cycle, morphogenesis and development from simple to complex multicellularity. The life cycle is isomorphic and biphasic type, knowledge of which is important in developing viable cultivation techniques. The culture of Ulva is by photo-bioreactor, land-based, and open-sea farming producing about 1500 t dry annum−1 biomass. The understanding of scientific basis for eutrophication-driven green tide events is of paramount importance for coastal ecosystem management. Studies related to cross-kingdom cross-talk between Ulva and surrounding microbes have been recently undertaken through high-throughput techniques to understand their role in growth, development, and morphogenesis. Several regional species are rich in vital nutrients and thus qualify in the functional food sector, and recent research is poised to develop a bio-refinery model for complete utilization of feedstock. Ulva spp. are also used as a feed source in aquaculture and for environmental bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abudabos AM, Okab AB, Aljumaah RS, Samara EM, Abdoun KA, Al-Haidary AA (2013) Nutritional value of green seaweed (Ulva lactuca) for broiler chickens. Ital J Anim Sci 12:e28

    Google Scholar 

  • Agarwal S, Banerjee K, Saha A, Amin G, Mitra A (2016) Can seaweed be a potential sink of carbon? Int J Res Appl Sci Eng Technol 4:217–225

    Google Scholar 

  • Alsufyani T, Engelen AH, Diekmann OE, Kuegler S, Wichard T (2014) Prevalence and mechanism of polyunsaturated aldehydes production in the green tide forming macroalgal genus Ulva (Ulvales, Chlorophyta). Chem Phys Lipids 183:100–109

    CAS  PubMed  Google Scholar 

  • Ansary MWR, Jeong HS, Lee KW, Kim PY, Kim J, Yun A-Y, Cho SH, Kim T-I (2019) Dietary substitution effect of Ulva australis for Undaria pinnatifida on growth, body composition and air exposure of juvenile abalone, Haliotis discus (Reeve 1846). J Appl Phycol 31:1467–1474

    CAS  Google Scholar 

  • Alves A, Caridade SG, Mano JF, Sousa RA, Reis RL (2010) Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydr Res 345:2194–2200

    CAS  PubMed  Google Scholar 

  • Awad NE (2000) Biologically active steroid from the green alga Ulva lactuca. Phytother Res 14:641–643

    CAS  PubMed  Google Scholar 

  • Bădescu IS, Dumitru Bulgariu D, Laura Bulgariu L (2017) Alternative utilization of algal biomass (Ulva sp.) loaded with Zn(II) ions for improving of soil quality. J Appl Phycol 29:1069–1079

    Google Scholar 

  • Balar NB, Mantri VA (2020) Insights into life cycle patterns, spore formation, induction of reproduction, biochemical and molecular aspects of sporulation in green algal genus Ulva: implications for commercial cultivation. J Appl Phycol 32:473–484

    Google Scholar 

  • Bansemer MS, Qin JG, Harris JO, Duong DN, Currie K-L, Howarth GS, Stone DAJ (2016) Dietary inclusions of dried macroalgae meal in formulated diets improve the growth of greenlip abalone (Haliotis laevigata). J Appl Phycol 28:3645–3658

    CAS  Google Scholar 

  • Baumann HA, Morrison L, Stengel DB (2009) Metal accumulation and toxicity measured by PAM--chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol Environ Saf 72:1063–1075

    CAS  PubMed  Google Scholar 

  • Blackman FF, Tansley AG (1902) A revision of the classification of the green algae. New Phytol 1:17–24

    Google Scholar 

  • Bliding C (1963) A critical survey of European taxa in Ulvales. Part 1. Capsosiphon, Percursaria, Blidingia, Enteromorpha. Opera Botanica 8:1–160

    Google Scholar 

  • Bliding C (1968) A critical survey of European taxa Ulvales II. Ulva, Ulvaria, Monostroma, Kornmannia. Bot Notiser 121:535–629

    Google Scholar 

  • Bolton JJ, Robertson-Andersson DV, Shuuluka D, Kandjengo L (2009) Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a SWOT analysis. J Appl Phycol 21:575–583

    Google Scholar 

  • Bonneau ER (1977) Polymorphic behavior of Ulva lactuca (Chlorophyta) in axenic culture. I. occurrence of Enteromorpha-like plants in haploid clones. J Phycol 13:133–140

    Google Scholar 

  • Brawley SH, Johnson LE (1992) Gametogenesis, gametes and zygotes: an ecological perspective on sexual reproduction in the algae. Br Phycol J 27:233–252

    Google Scholar 

  • Brown EM, Allsopp PJ, Magee PJ, Gill CIR, Nitecki S, Strain CR, McSorley EM (2014) Seaweed and human health. Nutr Rev 72:205–216

    PubMed  Google Scholar 

  • Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S (2011) Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J 5:590–600

    CAS  PubMed  Google Scholar 

  • Cabrita ARJ, Correia A, Rodrigues AR, Cortez PP, Vilanova M, Fonseca AJM (2017) Assessing in vivo digestibility and effects on immune system of sheep fed alfalfa hay supplemented with a fixed amount of Ulva rigida and Gracilaria vermiculophylla. J Appl Phycol 29:1057–1067

    CAS  Google Scholar 

  • Cañedo-Castro B, Piñón-Gimate A, Carrillo S, Ramos D, Casas-Valdez M (2019) Prebiotic effect of Ulva rigida meal on the intestinal integrity and serum cholesterol and triglyceride content in broilers. J Appl Phycol 31:3265–3273

    Google Scholar 

  • Castelar B, Reis RP, dos Santos Calheiros AC (2014) Ulva lactuca and U. flexuosa (Chlorophyta, Ulvophyceae) cultivation in Brazilian tropical waters: recruitment, growth, and ulvan yield. J Appl Phycol 26:1989–1999

    Google Scholar 

  • Chakraborty K, Lipton AP, Paulraj R, Chakraborty RD (2010a) Guaiane sesquiterpenes from seaweed Ulva fasciata Delile and their antibacterial properties. Eur J Med Chem 45:2237–2244

    CAS  PubMed  Google Scholar 

  • Chakraborty K, Lipton AP, Raj RP, Vijayan KK (2010b) Antibacterial labdane diterpenoids of Ulva fasciata Delile from southwestern coast of the Indian Peninsula. Food Chem 119:1399–1408

    CAS  Google Scholar 

  • Chapman VJ (1956) Marine algae of New Zealand. Part I, Myxophyceae and Chlorophyceae. J Linn Soc Lond Bot 55:333–501

    Google Scholar 

  • Charlier RH, Morand P, Finkl CW (2008) How Brittany and Florida coasts cope with green tides. Int J Environ Stud 65:191–208

    Google Scholar 

  • Chemodanov A, Robin A, Golberg A (2017) Design of marine macroalgae photobioreactor integrated into building to support seagriculture for biorefinery and bioeconomy. Bioresour Technol 241:1084–1093

    CAS  PubMed  Google Scholar 

  • Chen L, Feng J, Xie SL (2015) Ulva shanxiensis (Ulvaceae), a new species from Shanxi, China. Novon 23:397–406

    Google Scholar 

  • Choi WY, Kang DH, Lee HY (2013) Enhancement of the saccharification yields of Ulva pertusa Kjellmann and rape stems by the high-pressure steam pretreatment process. Biotechnol Bioprocess Eng 18:728–735

    CAS  Google Scholar 

  • Copertino MS, Tormena T, Seeliger U (2009) Biofiltering efficiency, uptake and assimilation rates of Ulva clathrata (Roth) J. Agardh (Chorophyceae) cultivated in shrimp aquaculture waste water. J Appl Phycol 21:31–45

    CAS  Google Scholar 

  • De Clerck O, Kao SM, Bogaert KA, Blomme J, Foflonker F, Kwantes M, Vancaester E, Vanderstraeten L, Aydogdu E, Boesger J, Califano G (2018) Insights into the evolution of multicellularity from the sea lettuce genome. Curr Biol 28:2921–2933

    PubMed  Google Scholar 

  • Dobretsov SV, Qian PY (2002) Effect of bacteria associated with the green alga Ulva reticulata on marine micro-and macrofouling. Biofouling 18:217–228

    Google Scholar 

  • Edwards DM, Reed RH, Chudek JA, Foster R, Stewart WDP (1987) Organic solute accumulation in osmotically-stressed Enteromorpha intestinalis. Mar Biotechnol 95:583–592

    CAS  Google Scholar 

  • Egan S, Thomas T, Holmström C, Kjelleberg S (2000) Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca: brief report. Environ Microbiol 2:343–347

    CAS  PubMed  Google Scholar 

  • El-Naggar NE, Hamouda RA, Mousa IE, Abdel-Hamid MS, Rabei NH (2018) Statistical optimization for cadmium removal using Ulva fasciata biomass: characterization, immobilization and application for almost-complete cadmium removal from aqueous solutions. Sci Rep 8:12456

    PubMed  PubMed Central  Google Scholar 

  • Ennamany R, Saboureau D, Mekideche N, Creppy EE (1998) SECMA 1®, a mitogenic hexapeptide from Ulva algeae modulates the production of proteoglycans and glycosaminoglycans in human foreskin fibroblast. Hum Exp Toxicol 17:18–22

    CAS  PubMed  Google Scholar 

  • Farias DR, Hurd CL, Eriksen RS, Simioni C, Schmidt E, Bouzon ZL, Macleod CK (2017) In situ assessment of Ulva australis as a monitoring and management tool for metal pollution. J Appl Phycol 29:2489–2502

    CAS  Google Scholar 

  • Fjeld A, Løvlie A (1976) Genetics of multicellular marine algae. In: Lewin RA (ed) The genetics of algae. University of California Press, Berkeley, California, pp 219–235

    Google Scholar 

  • Fleurence J (2016) Seaweeds as food. In: Fleurence J, Levine I (eds) Seaweed in health and disease prevention. Elsevier, Amsterdam, pp 149–167

    Google Scholar 

  • Fleurence J, Le Coeur C, Mabeau S, Maurice M, Landrein A (1995) Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. J Appl Phycol 7:577–582

    CAS  Google Scholar 

  • Flodin C, Whitfield FB (1999) 4-Hydroxybenzoic acid: a likely precursor of 2,4,6-tribromophenol in Ulva lactuca. Phytochemistry 51:249–255

    CAS  Google Scholar 

  • Fortes MD, Lüning K (1980) Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgol Meeresunters 34:15

    Google Scholar 

  • Foster GG, Hodgson AN (1998) Consumption and apparent dry matter digestibility of six intertidal macroalgae by Turbo sarmaticus (Mollusca: Vetigastropoda: Turbinidae). Aquaculture 167:211–227

    Google Scholar 

  • Friedlander M, Gonen Y, Kashman Y, Beer S (1996) Gracilaria conferta and its epiphytes: 3. Allelopathic inhibition of the red seaweed by Ulva cf. lactuca. J Appl Phycol 8:21–25

  • Fujimura T, Kawai T, Shiga M, Kajiwara T, Hatanaka A (1990) Long-chain aldehyde production in thalli culture of the marine green alga Ulva pertusa. Phytochemistry 29:745–747

    CAS  Google Scholar 

  • Gajaria TK, Suthar P, Baghel RS, Balar NB, Sharnagat P, Mantri VA, Reddy CRK (2017) Integration of protein extraction with a stream of byproducts from marine macroalgae: a model forms the basis for marine bioeconomy. Bioresour Technol 243:867–873

    CAS  PubMed  Google Scholar 

  • Ganesan M, Selvaraj K, Chithra K, Sirajudeen S (2015) Epiphytism differences in Gelidiella acerosa cultivated with floating rafts and concrete blocks. J Appl Phycol 27:399–412

    Google Scholar 

  • Gao G, Clare AS, Rose C, Caldwell GS (2018) Ulva rigida in the future ocean: potential for carbon capture, bioremediation and biomethane production. GCB Bioenergy 10:39–51

    CAS  Google Scholar 

  • Gauna MC, Escobar JF, Odorisio M, Ceres EJC, Parodi ER (2016) Spatial and temporal variation in algal epiphyte distribution on Ulva sp. (Ulvales, Chlorophyta) from northern Patagonia in Argentina. Phycologia. 56:125–135

    Google Scholar 

  • Ghaderiardakani F, Coates JC, Wichard T (2017) Bacteria-induced morphogenesis of Ulva intestinalis and Ulva mutabilis (Chlorophyta): a contribution to the lottery theory. FEMS Microbiol Ecol 93(8):fix094

  • Glasson CR, Sims IM, Carnachan SM, de Nys R, Magnusson M (2017) A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. Algal Res 27:383–391

    Google Scholar 

  • Gleditsch JG (1764) Systema plantarum a staminum situ, secundum classes, ordines et genera, cum characteribus essentialibus. Berolini apud Haude et Spener, 323 p

  • Goecke F, Labes A, Wiese J, Imhoff JF (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–299

    CAS  Google Scholar 

  • Grobe CW, Murphy TM (1998) Solar ultraviolet-B radiation effects on growth and pigment composition of the intertidal alga Ulva expansa (Setch.) S. & G. (Chlorophyta). J Exp Mar Biol Ecol 225:39–51

    CAS  Google Scholar 

  • Guerreiro I, Magalhães R, Coutinho F, Couto A, Sousa S, Delerue-Matos C, Domingues VF, Oliva-Teles A, Peres H (2019) Evaluation of the seaweeds Chondrus crispus and Ulva lactuca as functional ingredients in gilthead seabream (Sparus aurata). J Appl Phycol 31:2115–2124

    CAS  Google Scholar 

  • Guiry MD, Guiry GM (2020) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 17 January 2020

  • Gupta V, Trivedi N, Simoni S, Reddy CRK (2018) Marine macroalgal nursery: a model for sustainable production of seedlings for large scale farming. Algal Res 31:463–468

    Google Scholar 

  • Hamouda RA, Sherif SA, Dawoud GT, Ghareeb MM (2016) Enhancement of bioethanol production from Ulva fasciata by biological and chemical saccharification. Rend Lincei 27:665–672

    Google Scholar 

  • Harder T, Dobretsov S, Qian PY (2004) Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Mar Ecol Prog Ser 274:133–141

    CAS  Google Scholar 

  • Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur J Phycol 38:277–294

    Google Scholar 

  • Hayden HS, Waaland JR (2004) A molecular systematic study of Ulva (Ulvaceae, Ulvales) from the northeast Pacific. Phycologia 43:364–382

    Google Scholar 

  • He Y, Wang Y, Hu C, Sun X, Li Y, Xu N (2019) Dynamic metabolic profiles of the marine macroalga Ulva prolifera during fragmentation-induced proliferation. PLoS One 14:e0214491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heesch S, Broom JE, Neill KF, Farr TJ, Dalen JL, Nelson WA (2009) Ulva, Umbraulva and Gemina: genetic survey of New Zealand taxa reveals diversity and introduced species. Eur J Phycol 44:143–154

    CAS  Google Scholar 

  • Hiraoka M, Enomoto S (1998) The induction of reproductive cell formation of Ulva pertusa Kjellman (Ulvales, Ulvophyceae). Phycol Res 46:199–203

    Google Scholar 

  • Hiraoka M, Ichihara K, Zhu W, Ma J, Shimada S (2011) Culture and hybridization experiments on an Ulva clade including the Qingdao strain blooming in the Yellow Sea. PLoS One 6:e19371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraoka M, Oka N (2008) Tank cultivation of Ulva prolifera in deep seawater using a new “germling cluster” method. J Appl Phycol 20:97–102

    Google Scholar 

  • Hiraoka M, Shimada S, Uenosono M, Masuda M (2004) A new green tide forming alga, Ulva ohnoi Hiraoka et Shimada sp. nov. (Ulvales, Ulvophyceae) from Japan. Phycol Res 52:17–29

    Google Scholar 

  • Hlihor RM, Apostol LC, Gavrilescu M (2017) Environmental bioremediation by biosorption and bioaccumulation: principles and applications. In: Anjum N, Gill S, Tuteja N (eds) Enhancing cleanup of environmental pollutants. Springer, Cham, pp 289–315

    Google Scholar 

  • Ho YB (1990) Ulva lactuca as bioindicator of metal contamination in intertidal waters in Hong Kong. Hydrobiologia 203:73–81

    CAS  Google Scholar 

  • Hofmann LC, Nettleton JC, Neefus CD, Mathieson AC (2010) Cryptic diversity of Ulva (Ulvales, Chlorophyta) in the Great Bay Estuarine System (Atlantic USA): introduced and indigenous distromatic species. Eur J Phycol 45:230–239

    Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    CAS  Google Scholar 

  • Hoxmark RC (1975) Experimental analysis of life cycle of Ulva mutabilis. Bot Mar 18:123–129

    Google Scholar 

  • Hughey JR, Maggs CA, Mineur F, Jarvis C, Miller KA, Shabaka SH, Gabrielson PW (2019) Genetic analysis of the Linnaean Ulva lactuca (Ulvales, Chlorophyta) holotype and related type specimens reveals name misapplications, unexpected origins, and new synonymies. J Phycol 53:505–508

    Google Scholar 

  • Ibrahim WM, Hassan AF, Azab YA (2016) Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egypt J Basic Appl Sci 3:241–249

    Google Scholar 

  • Ichihara K, Arai S, Uchimura M, Fay EJ, Ebata H, Hiraoka M, Shimada S (2009) New species of freshwater Ulva, Ulva limnetica (Ulvales, Ulvophyceae) from the Ryukyu Islands, Japan. Phycol Res 57(2):94–103

    Google Scholar 

  • Ingle KN, Polikovsky M, Chemodanov A, Golberg A (2018) Marine integrated pest management (MIPM) approach for sustainable seagriculture. Algal Res 29:223–232

    Google Scholar 

  • Ismail A, Ktari L, Ahmed M, Bolhuis H, Bouhaouala-Zahar B, Stal LJ, Boudabbous A, El Bour M (2018) Heterotrophic bacteria associated with the green alga Ulva rigida: identification and antimicrobial potential. J Appl Phycol 30:2883–2899

    CAS  Google Scholar 

  • Israel A, Golberg A, Neori A (2020) The seaweed resources of Israel in the Eastern Mediterranean Sea. Bot Mar 63:85–96

  • Ito K, Hori K (1989) Seaweed: chemical composition and potential food uses. Food Rev Int 5:101–144

    CAS  Google Scholar 

  • Jannat-Alipour H, Rezaei M, Shabanpour B, Tabarsa M (2019) Edible green seaweed, Ulva intestinalis as an ingredient in surimi-based product: chemical composition and physicochemical properties. J Appl Phycol 31:2529–2539

    CAS  Google Scholar 

  • Joint I, Tait K, Wheeler G (2007) Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos Trans R Soc B 362:1223–1233

    CAS  Google Scholar 

  • Kaeffer B, Bénard C, Lahaye M, Blottière HM, Cherbut C (1999) Biological properties of ulvan, a new source of green seaweed sulfated polysaccharides, on cultured normal and cancerous colonic epithelial cells. Planta Med 65:527–531

    CAS  PubMed  Google Scholar 

  • Kaladharan P, Veena S, Vivekanandan E (2009) Carbon sequestration by a few marine algae: observation and projection. J Mar Biol Assoc India 51:107–110

    Google Scholar 

  • Kamermans P, Malta EJ, Verschuure JM, Schrijvers L, Lentz LF, Lien ATA (2002) Effect of grazing by isopods and amphipods on growth of Ulva spp. (Chlorophyta). Aquat Ecol 36:425–433

    Google Scholar 

  • Kang JH, Jang JE, Kim JH, Byeon SY, Kim S, Choi SK, Kang YH, Park SR, Lee HJ (2019) Species composition, diversity, and distribution of the genus Ulva along the coast of Jeju Island, Korea based on molecular phylogenetic analysis. PLoS One 14(7):e0219958

  • Karthikeyan S, Balasubramanian R, Iyer CSP (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresour Technol 98:452–455

    CAS  PubMed  Google Scholar 

  • Kazi MA, Kavale MG, Singh VV (2016) Morphological and molecular characterization of Ulva chaugulii sp. nov., U. lactuca and U. ohnoi (Ulvophyceae, Chlorophyta) from India. Phycologia 55:45–54

    Google Scholar 

  • Kessler RW, Weiss A, Kuegler S, Hermes C, Wichard T (2018) Macroalgal–bacterial interactions: role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta). Mol Ecol 27:1808–1819

    CAS  PubMed  Google Scholar 

  • Korzen L, Pulidindi IN, Israel A, Abelson A, Gedanken A (2015) Single step production of bioethanol from the seaweed Ulva rigida using sonication. RSC Adv 5:16223–16229

    CAS  Google Scholar 

  • Kraft LG, Kraft GT, Waller RF (2010) Investigations into southern Australian Ulva (Ulvophyceae, Chlorophyta) taxonomy and molecular phylogeny indicate both cosmopolitanism and endemic cryptic species. J Phycol 46:1257–1277

    Google Scholar 

  • Krupnik N, Paz G, Douek J, Lewinsohn E, Israel A, Carmel N, Mineur F, Maggs CA (2018) Native, invasive and cryptogenic Ulva species from the Israeli Mediterranean Sea: risk and potential. Mediterr Mar Sci 19:132–146

    Google Scholar 

  • Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774

    CAS  PubMed  Google Scholar 

  • Laramore S, Baptiste R, Wills PS, Hanisak MD (2018) Utilization of IMTA-produced Ulva lactuca to supplement or partially replace pelleted diets in shrimp (Litopenaeus vannamei) reared in a clear water production system. J Appl Phycol 30:3603–3610

    CAS  Google Scholar 

  • Lawton RJ, Mata L, de Nys R, Paul NA (2013) Algal bioremediation of waste waters from land-based aquaculture using Ulva: selecting target species and strains. PLoS One 8:e77344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DG, Hyun JW, Kang KA, Lee JO, Lee SH, Ha BJ, Ha JM, Lee EY, Lee JH (2004) Ulva lactuca: a potential seaweed for tumor treatment and immune stimulation. Biotechnol Bioprocess Eng 9:236

    CAS  Google Scholar 

  • Lee SY, Chang JH, Lee SB (2014) Chemical composition, saccharification yield, and the potential of the green seaweed Ulva pertusa. Biotechnol Bioprocess Eng 19:1022–1033

    CAS  Google Scholar 

  • Lee TM, Chen MH (1998) Hyposaline effect on polyamine accumulation in Ulva fasciata (Ulvales, Chlorophyta). Bot Bull Acad Sin 39:169–174

    Google Scholar 

  • Leliaert F, Zhang X, Ye N, Malta EJ, Engelen AH, Mineur F, Verbruggen H, De Clerck O (2009) Identity of the Qingdao algal bloom. Phycol Res 57:147–151

    Google Scholar 

  • Li W, Wang K, Jiang N, Liu X, Wan M, Chang X, Liu D, Qi H, Liu S (2018) Antioxidant and antihyperlipidemic activities of purified polysaccharides from Ulva pertusa. J Appl Phycol 30:2619–2627

    CAS  Google Scholar 

  • Lin AP, Wang C, Pan GH, Song LY, Gao S, Xie XJ, Wang ZY, Niu JF, Wang GC (2011) Diluted seawater promoted the green tide of Ulva prolifera (Chlorophyta, Ulvales). Phycol Res 9:295–304

    Google Scholar 

  • Linnaeus C (1753) Species plantarum. Laurentius Salvius, Stockholm 1200 pp

    Google Scholar 

  • Liu D, Keesing JK, Dong Z, Zhen Y, Di B, Shi Y, Fearns P, Shi P (2010a) Recurrence of the world’s largest green tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar Pollut Bull 60:1423–1432

    CAS  PubMed  Google Scholar 

  • Liu F, Pang SJ, Xu N, Shan TF, Sun S, Hu X, Yang JQ (2010b) Ulva diversity in the Yellow Sea during the large-scale green algal blooms in 2008–2009. Phycol Res 58:270–279

    Google Scholar 

  • Liu J, Zhuang Y, Li Y, Chen L, Guo J, Li D, Ye N (2013) Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology. Energy 60:69–76

    CAS  Google Scholar 

  • Liu JM, Zhao JY, Lu PP, Chen M, Guo CH, Xu ZS, Ma YZ (2016) The E-subgroup pentatricopeptide repeat protein family in Arabidopsis thaliana and confirmation of the responsiveness PPR96 to abiotic stresses. Front Plant Sci 7:1825

    PubMed  PubMed Central  Google Scholar 

  • López SB, Fernandez IB, Lozano RB, Ugarte JC (2007) Is the cryptic alien seaweed Ulva pertusa (Ulvales, Chlorophyta) widely distributed along European Atlantic coasts? Bot Mar 50:267–274

    Google Scholar 

  • Loughnane CJ, McIvor LM, Rindi F, Stengel DB, Guiry MD (2008) Morphology, rbcL phylogeny and distribution of distromatic Ulva (Ulvophyceae, Chlorophyta) in Ireland and southern Britain. Phycologia 47:416–429

    CAS  Google Scholar 

  • Løvlie A (1968) On the use of a multicellular alga (Ulva mutabilis Føyn) in the study of general aspects of growth and differentiation. Nytt Mag Zool 16:39–49

    Google Scholar 

  • Løvlie A (1969) Cell size, nucleic acids, and synthetic efficiency in the wild type and a growth mutant of the multicellular alga Ulva mutabilis Føyn. Dev Biol 20:349–367

    PubMed  Google Scholar 

  • Løvlie A, Bråten T (1968) On the division of cytoplasm and chloroplast in the multicellular green alga Ulva mutabilis Føyn. Exp Cell Res 51:211–220

    PubMed  Google Scholar 

  • Løvlie A, Bråten T (1970) On mitosis in the multicellular alga Ulva mutabilis Føyn. J Cell Sci 6:109–128

    PubMed  Google Scholar 

  • Lüning K, Kadel P, Pang S (2008) Control of reproduction rhythmicity by environmental and endogenous signals in Ulva pseudocurvata (Chlorophyta). J Phycol 44:866–873

    PubMed  Google Scholar 

  • MacArtain P, Gill CI, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543

    PubMed  Google Scholar 

  • Magnusson M, Carl C, Mata L, de Nys R, Paul NA (2016) Seaweed salt from Ulva: a novel first step in a cascading biorefinery model. Algal Res 16:308–316

    Google Scholar 

  • Mairh OP, Pandey RS, Tewari A (1986) Culture of Enteromorpha flexuosa (Wulf.) J. Ag. (Chlorophyceae) in outdoor pool. Indian J Mar Sci 15:212–218

    Google Scholar 

  • Malea P, Haritonidis S (2000) Use of the green alga Ulva rigida C. Agardh as an indicator species to reassess metal pollution in the Thermaikos Gulf, Greece, after 13 years. J Appl Phycol 12:169–176

    CAS  Google Scholar 

  • Malta EJ, Draisma SG, Kamermans P (1999) Free-floating Ulva in the southwest Netherlands: species or morphotypes? A morphological, molecular and ecological comparison. Eur J Phycol 34:443–454

    Google Scholar 

  • Mamatha BS, Namitha KK, Senthil A, Smitha J, Ravishankar GA (2007) Studies on use of Enteromorpha in snack food. Food Chem 101:1707–1713

    CAS  Google Scholar 

  • Mantri VA, Singh RP, Bijo AJ, Kumari P, Reddy CRK, Jha B (2011) Differential response of varying salinity and temperature on zoospore induction, regeneration and daily growth rate in Ulva fasciata (Chlorophyta, Ulvales). J Appl Phycol 23:243–250

    Google Scholar 

  • Mao W, Zang X, Li Y, Zhang H (2006) Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. J Appl Phycol 18:9–14

    CAS  Google Scholar 

  • Marfaing H, Lerat Y (2007) Les algues ont-elles une place en nutrition. Phytothérapie. Numéro Hors-Série: HS2–HS5

  • Marshall K, Joint I, Callow ME, Callow JA (2006) Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza. Microb Ecol 52:302–310

    PubMed  Google Scholar 

  • Marsham S, Scott GW, Tobin M (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100:1331–1336

    CAS  Google Scholar 

  • Masakiyo Y, Shimada S (2014) Species diversity of the genus Ulva (Ulvophyceae, Chlorophyta) in Japanese waters, with special reference to Ulva tepida Masakiyo et S. Shimada sp. nov. Bull Nat Mus Nat Sci B 40:1–3

    Google Scholar 

  • Mata L, Magnusson M, Paul NA, De Nys R (2016) The intensive land-based production of the green seaweeds Derbesia tenuissima and Ulva ohnoi: biomass and bioproducts. J Appl Phycol 28:365–375

    CAS  Google Scholar 

  • Mattox KR, Stewart KD (1984) Systematics of the green algae. Classification of the green algae: a concept based on comparative cytology. In: Irvine DEG, John D (eds) Systematics of the green algae. Academic Press, London, pp 29–72

    Google Scholar 

  • McArthur DM, Moss BL (1978) Ultrastructural studies of vegetative cells, mitosis and cell division in Enteromorpha intestinalis (L.) Link. Br Phycol J 13:255–267

    Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry. FAO Fish Tech Pap 441:73–90

    Google Scholar 

  • Messyasz B, Czerwik-Marcinkowska J, Uher B, Rybak A, Szendzina L, Pikosz M (2013) Ulva flexuosa subsp. pilifera (Chlorophyta, Ulvophyceae) from the Wielkopolska region (West Poland): a new observation on the ultrastructure of vegetative cells. Oceanol Hydrobiol Stud 42:209–215

    Google Scholar 

  • Mhatre A, Gore S, Mhatre A, Trivedi N, Sharma M, Pandit R, Anil A, Lali A (2019) Effect of multiple product extractions on bio-methane potential of marine macrophytic green alga Ulva lactuca. Renew Energy 132:742–751

    CAS  Google Scholar 

  • Msuya FE, Neori A (2008) Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks. J Appl Phycol 20:1021–1031

    CAS  Google Scholar 

  • Mulvaney WJ, Winberg PC, Adams L (2013) Comparison of macroalgal (Ulva and Grateloupia spp.) and formulated terrestrial feed on the growth and condition of juvenile abalone. J Appl Phycol 25:815–824

    Google Scholar 

  • Muñoz J, Fotedar R (2010) Epiphytism of Gracilaria cliftonii (Withell, Millar & Kraft) from Western Australia. J Appl Phycol 22:371–379

    Google Scholar 

  • Nakanishi K, Nishijima M, Nishimura M, Kuwano K, Saga N (1996) Bacteria that induce morphogenesis in Ulva pertusa (Chlorophyta) grown under axenic conditions. J Phycol 32:479–482

    Google Scholar 

  • Nielsen MM, Bruhn A, Rasmussen MB, Olesen B, Larsen MM, Møller HB (2012) Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. J Appl Phycol 24:449–458

    Google Scholar 

  • Nisizawa K, Noda H, Kikuchi R, Watanabe T (1987) The main seaweed foods in Japan. Hydrobiologia 151:5–29

    Google Scholar 

  • O’Kelly CJ, Kurihara A, Shipley TC, Sherwood AR (2010) Molecular assessment of Ulva spp. (Ulvophyceae, Chlorophyta) in the Hawaiian islands. J Phycol 46:728–735

    Google Scholar 

  • Ohno M (2006) Recent developments in the seaweed cultivation and industry in Japan. In: Phang SM, Critchley AT, Ang P (eds) Advances in seaweed cultivation and utilization in Asia. University of Malaya Maritime Research Centre, Kuala Lumpur, pp 1–20

    Google Scholar 

  • Olasehinde TA, Mabinya LV, Olaniran AO, Okoh AI (2019) Chemical characterization of sulfated polysaccharides from Gracilaria gracilis and Ulva lactuca and their radical scavenging, metal chelating, and cholinesterase inhibitory activities. Int J Food Prop 22:100–110

    CAS  Google Scholar 

  • Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernández J, Bozzo C, Navarrete E, Osorio A, Rios A (2006) Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem 99:98–104

    CAS  Google Scholar 

  • Oza RM, Joshi HV, Mairh OP, Tewari A (1985) Swarmer production and cultivation of Ulva fasciata Delile in intertidal regions at Okha, west coast of India. Indian J Mar Sci 14:217–219

    Google Scholar 

  • Oza RM, Rao PS (1977) Effect of different culture media on growth and sporulation of laboratory raised germlings of Ulva fasciata Delile. Bot Mar 20:427–432

    Google Scholar 

  • Pallaoro MF, do Nascimento Vieira F, Hayashi L (2016) Ulva lactuca (Chlorophyta Ulvales) as co-feed for Pacific white shrimp. J Appl Phycol 28:3659–3665

    CAS  Google Scholar 

  • Papenfuss GF (1960) On the genera of the Ulvales and the status of the order 1. J Linn Soc Bot 56:303–318

    Google Scholar 

  • Paradossi G, Cavalieri F, Pizzoferrato L, Liquori AM (1999) A physico-chemical study on the polysaccharide ulvan from hot water extraction of the macroalga Ulva. Int J Biol Macromol 25:309–315

    CAS  PubMed  Google Scholar 

  • Peña-Rodríguez A, Mawhinney TP, Ricque-Marie D, Cruz-Suárez LE (2011) Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chem 129(2):491–498

    PubMed  Google Scholar 

  • Pereira L (2016) Edible seaweeds of the world. CRC Press, Boca Raton, p 463

    Google Scholar 

  • Polikovsky M, Fernand F, Sack M, Frey W, Müller G, Golberg A (2016) Towards marine biorefineries: selective proteins extractions from marine macroalgae Ulva with pulsed electric fields. Innov Food Sci Emerg Technol 37:194–200

    CAS  Google Scholar 

  • Polne-Fuller M, Gibor A (1986) Algal cell, callus and tissue cultures and selection of algal strains. Beih Nova Hedwigia 83:30–36

    Google Scholar 

  • Prabhu MS, Levkov K, Livney YD, Israel A, Golberg A (2019) High-voltage pulsed electric field preprocessing enhances extraction of starch, proteins, and ash from marine macroalgae Ulva ohnoi. ACS Sustain Chem Eng 7:17453–17463

    CAS  Google Scholar 

  • Prasanna Kumar Y, King P, Prasad VSRK (2006) Removal of copper from aqueous solution using Ulva fasciata sp.—a marine green algae. J Hazard Mater B137:367–373

    Google Scholar 

  • Pröschold T, Leliaert F (2007) Systematics of the green algae: conflict of classic and modern approaches. In: Brodie J, Lewis J (eds) Unravelling the algae: the past, present, and future. Systematics Association Special Volume 75. CRC Press, Boca Raton, pp 123–153

    Google Scholar 

  • Provasoli L (1965) Nutritional aspects of seaweed growth. Proc Can Soc Plant Physiol 6:26–27

    Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In Watanabe A, Hattori A (eds) Cultures and collections of algae. Proceedings of US-Japan Conference, Hakone, September 1966. Japanese Society of Plant Physiology pp 63–75.

  • Provasoli L, Pintner IJ (1980) Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca (Chlorophyceae). J Phycol 32:479–482

    Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    CAS  PubMed  Google Scholar 

  • Qiu X, Neori A, Kim JK, Yarish C, Shpigel M, Guttman L, Ben Ezra D, Odintsov V, Davis DA (2018) Green seaweed Ulva sp. as an alternative ingredient in plant-based practical diets for Pacific white shrimp, Litopenaeus vannamei. J Appl Phycol 30:1317–1333

    Google Scholar 

  • Rao D, Webb JS, Holmström C, Case R, Low A, Steinberg P, Kjelleberg S (2007) Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Appl Environ Microbiol 73:7844–7852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray J (1724) Synopsis methodica stirpium Britannicarum (Vol. 1). Impensis Gulielmi & Joannis Innys

  • Ripps H, Shen W (2012) Taurine: a “very essential” amino acid. Mol Vis 18:2673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robic A, Bertrand D, Sassi JF, Lerat Y, Lahaye M (2009a) Determination of the chemical composition of ulvan, a cell wall polysaccharide from Ulva spp. (Ulvales, Chlorophyta) by FT-IR and chemometrics. J Appl Phycol 21:451–456

    CAS  Google Scholar 

  • Robic A, Sassi JF, Dion P, Lerat Y, Lahaye M (2009b) Seasonal variability of physicochemical and rheological properties of ulvan in two Ulva species (Chlorophyta) from the Brittany coast. J Phycol 45:962–973

    CAS  PubMed  Google Scholar 

  • Roth-Schulze AJ, Zozaya-Valdés E, Steinberg PD, Thomas T (2016) Partitioning of functional and taxonomic diversity in surface-associated microbial communities. Environ Microbiol 18:4391–4402

    PubMed  Google Scholar 

  • Rybak AS (2015) Revision of herbarium specimens of freshwater Enteromorpha-like Ulva (Ulvaceae, Chlorophyta) collected from Central Europe during the years 1849–1959. Phytotaxa 218:001–029

    Google Scholar 

  • Rybak AS (2018) Species of Ulva (Ulvophyceae, Chlorophyta) as indicators of salinity. Ecol Indic 85:253–261

    Google Scholar 

  • Santizo-Taan R, Bautista-Teruel M, Maquirang JRH (2020) Enriched Ulva pertusa as partial replacement of the combined fish and soybean meals in juvenile abalone Haliotis asinina (Linnaeus) diet. J Appl Phycol 32:741–749

    CAS  Google Scholar 

  • Schoenwaeler MEA, Wiencke C, Clayton MN, Glombitza KW (2003) The effect of elevated UV radiation on Fucus spp. (Fucales, Phaeophyta) zygote and embryo development. Plant Biol 5:366–377

    Google Scholar 

  • Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262

    CAS  PubMed  Google Scholar 

  • Shimada S, Hiraoka M, Nabata S, Iima M, Masuda M (2003) Molecular phylogenetic analyses of the Japanese Ulva and Enteromorpha (Ulvales, Ulvophyceae), with special reference to the free-floating Ulva. Phycol Res 51:99–108

    CAS  Google Scholar 

  • Shimada S, Yokoyama N, Arai S, Hiraoka M (2008) Phylogeography of the genus Ulva (Ulvophyceae, Chlorophyta), with special reference to the Japanese freshwater and brackish taxa. J Appl Phycol 20:979–989

    Google Scholar 

  • Shpigel M, Guttman L, Ben-Ezra D, Yu J, Chen S (2019) Is Ulva sp. able to be an efficient biofilter for mariculture effluents? J Appl Phycol 31:2449–2459

    CAS  Google Scholar 

  • Shuuluka D, Bolton JJ, Anderson RJ (2013) Protein content, amino acid composition and nitrogen-to-protein conversion factors of Ulva rigida and Ulva capensis from natural populations and Ulva lactuca from an aquaculture system, in South Africa. J Appl Phycol 25:677–685

    CAS  Google Scholar 

  • Siddhanta AK, Goswami AM, Ramavat BK, Mody KH, Mairh OP (2001) Water soluble polysaccharides of marine algal species of Ulva (Ulvales, Chlorophyta) of Indian waters. Indian J Mar Sci 30:166–172

    CAS  Google Scholar 

  • Silverberg BA (1975) An ultrastructural and cytochemical characterization of microbodies in the green algae. Protoplasma 83:269–295

    CAS  PubMed  Google Scholar 

  • Singh R, Bhaskar T, Balagurumurthy B (2015) Effect of solvent on the hydrothermal liquefaction of macro algae Ulva fasciata. Process Saf Environ 93:154–160

    CAS  Google Scholar 

  • Singh RP, Mantri VA, Reddy CRK, Jha B (2011) Isolation of seaweed-associated bacteria and their morphogenesis inducing capability in axenic cultures of the green alga Ulva fasciata. Aquat Biol 12:13–21

    Google Scholar 

  • Siniscalchi AG, Gauna MC, Caceres EJ, Parodi ER (2012) Myrionema strangulans (Chordariales, Phaeophyceae) epiphyte on Ulva spp. (Ulvophyceae) from Patagonian Atlantic coasts. J Appl Phycol 24:475–486

    Google Scholar 

  • Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262

  • Spalding HL, Conklin KY, Smith CM, O'Kelly CJ, Sherwood AR (2016) New Ulvaceae (Ulvophyceae, Chlorophyta) from mesophotic ecosystems across the Hawaiian archipelago. J Phycol 52:40–53

    PubMed  Google Scholar 

  • Spavieri J, Kaiser M, Casey R, Hingley-Wilson S, Lalvani A, Blunden G, Tasdemir D (2010) Antiprotozoal, antimycobacterial and cytotoxic potential of some British green algae. Phytother Res 24:1095–1098

    PubMed  Google Scholar 

  • Spoerner M, Wichard T, Bachhuber T, Stratmann J, Oertel W (2012) Growth and thallus morphogenesis of Ulva mutabilis (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J Phycol 48:1433–1447

    PubMed  Google Scholar 

  • Steyn PP (2000) A comparative study of the production and suitability of two Ulva species as abalone fodder in a commercial mariculture system. M.Sc. Thesis. University of Port Elisabeth, South Africa 92 p

  • Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Más P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771

    CAS  PubMed  Google Scholar 

  • Suganya T, Renganathan S (2012) Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca. Bioresour Technol 107:319–326

    CAS  PubMed  Google Scholar 

  • Sung MS, Chow TJ, Lee TM (2011) Polyamine acclimation alleviates hypersalinity-induced oxidative stress in a marine green macroalga, Ulva fasciata, by modulation of antioxidative enzyme gene expression. J Phycol 47:538–547

    CAS  PubMed  Google Scholar 

  • Tabarsa M, Rezaei M, Ramezanpour Z, Waaland JR (2012) Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. J Sci Food Agric 92:2500–2506

    CAS  PubMed  Google Scholar 

  • Taboada C, Millán R, Míguez I (2010) Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida. J Sci Food Agric 90:445–449

    CAS  PubMed  Google Scholar 

  • Tanner CE (1980) Chloropelta gen. nov., an ulvaceous green alga with a different type of development. J Phycol 16:128–137

    Google Scholar 

  • Trivedi N, Baghel RS, Bothwell J, Gupta V, Reddy CR, Lali AM, Jha B (2016) An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Sci Rep 6:30728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi N, Gupta V, Reddy CR, Jha B (2013) Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour Technol 150:106–112

    CAS  PubMed  Google Scholar 

  • Tujula NA (2006) Analysis of the epiphytic bacterial community associated with the green alga Ulva australis. PhD thesis. University of New South Wales, Sydney 165 p

  • Uchimura M (2004) Ecological studies of green tide, Ulva spp. (Chlorophyta) in Hiroshima Bay, the Seto Inland Sea. Jap J Phycol 52:17–22

    Google Scholar 

  • Uribe E, Vega-Gálvez A, García V, Pastén A, López J, Goñi G (2019) Effect of different drying methods on phytochemical content and amino acid and fatty acid profiles of the green seaweed, Ulva spp. J Appl Phycol 31:1967–1979

    CAS  Google Scholar 

  • Valdés FA, Gabriela Lobos M, Díaz P, Sáez CA (2018) Metal assessment and cellular accumulation dynamics in the green macroalga Ulva lactuca. J Appl Phycol 30:663–671

    Google Scholar 

  • Valente LMP, Araújo M, Batista S, Peixoto MJ, Sousa-Pinto I, Brotas V, Cunha LM, Rema P (2016) Carotenoid deposition, flesh quality and immunological response of Nile tilapia fed increasing levels of IMTA-cultivated Ulva spp. J Appl Phycol 28:691–701

    CAS  Google Scholar 

  • Van Alstyne KL, Nelson TA, Ridgway RL (2015) Environmental chemistry and chemical ecology of “green tide” seaweed blooms. Integr Comp Biol 55:518–532

    PubMed  Google Scholar 

  • Van den Burg S, Stuiver M, Veenstra F, Bikker P, López Contreras A, Palstra A, Broeze J, Jansen H, Jak R, Gerritsen A, Harmsen P, Kals J, Blanco A, Brandenburg W, Van Krimpen M, Van Duijn AP, Mulder W, Van Raamsdonk L (2013) A triple P review of the feasibility of sustainable offshore seaweed production in the North Sea, Wageningen UR LEI Report 13–077, Wageningen, September 2013, pp 1–105

  • Van den Hoek C (1964) Criteria and procedures in present-day algal taxonomy. In: Jackson DF (ed) Algae and man. Springer, Boston, pp 31–58

    Google Scholar 

  • Van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge, 623 pp

    Google Scholar 

  • Vandermeulen H, Gordin H (1990) Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: mass culture and treatment of effluent. J Appl Phycol 2:363–374

    CAS  Google Scholar 

  • van der Wal H, Sperber BL, Houweling-Tan B, Bakker RR, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437

    PubMed  Google Scholar 

  • Ventura MR, Castañón JIR (1998) The nutritive value of seaweed (Ulva lactuca) for goats. Small Rumin Res 29:325–327

    Google Scholar 

  • Vesty EF, Kessler RW, Wichard T, Coates JC (2015) Regulation of gametogenesis and zoosporogenesis in Ulva linza (Chlorophyta): comparison with Ulva mutabilis and potential for laboratory culture. Front Plant Sci 6:15

    PubMed  PubMed Central  Google Scholar 

  • Wan AH, Wilkes RJ, Heesch S, Bermejo R, Johnson MP, Morrison L (2017) Assessment and characterisation of Ireland’s green tides (Ulva species). PLoS One 12:e0169049

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    PubMed  Google Scholar 

  • Wang WX, Dei RCH (1999) Kinetic measurements of metal accumulation in two marine macroalgae. Mar Biol 135:11–23

    Google Scholar 

  • Wang Y, Liu F, Liu X, Shi S, Bi Y, Moejes FW (2019) Comparative transcriptome analysis of four co-occurring Ulva species for understanding the dominance of Ulva prolifera in the Yellow Sea green tides. J Appl Phycol 31:3303–3316

    Google Scholar 

  • Wichard T (2016) Identification of metallophores and organic ligands in the chemosphere of the marine macroalga Ulva (Chlorophyta) and at land-sea interfaces. Front Mar Sci 3:131

    Google Scholar 

  • Wichard T, Charrier B, Mineur F, Bothwell JH, De Clerck O, Coates JC (2015) The green seaweed Ulva: a model system to study morphogenesis. Front Plant Sci 6:72

    PubMed  PubMed Central  Google Scholar 

  • Wichard T (2015) Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Front Plant Sci 6:86

    PubMed  PubMed Central  Google Scholar 

  • Wijesekara I, Lang M, Marty C, Gemin M-P, Boulho R, Douzenel P, Wickramasinghe I, Bedoux G, Bourgougnon N (2017) Different extraction procedures and analysis of protein from Ulva sp. in Brittany, France. J Appl Phycol 29:2503–2511

    CAS  Google Scholar 

  • Wolf MA, Sciuto K, Andreoli C, Moro I (2012) Ulva (Chlorophyta, Ulvales) biodiversity in the North Adriatic Sea (Mediterranean, Italy): cryptic species and new introductions. J Phycol 48:1510–1521

    PubMed  Google Scholar 

  • Wong KH, Cheung PC (2001) Nutritional evaluation of some subtropical red and green seaweeds Part II. In vitro protein digestibility and amino acid profiles of protein concentrates. Food Chem 72:11–17

    CAS  Google Scholar 

  • Woolcott GW, King RJ (1993) Taxonomy of Ulvaceae, Monostromataceae and Percusariaceae (Chlorophyta) in Australia. Kor J Phycol 8:121–144

    Google Scholar 

  • Xu D, Gao Z, Zhang X, Fan X, Wang Y, Li D, Wang W, Zhuang Z, Ye N (2012a) Allelopathic interactions between the opportunistic species Ulva prolifera and the native macroalga Gracilaria lichenoides. PLoS One 7:e33648

  • Xu J, Fan X, Zhang X, Xu D, Mou S, Cao S, Zheng Z, Miao J, Ye N (2012b) Evidence of coexistence of C3 and C4 photosynthetic pathways in a green-tide-forming alga, Ulva prolifera. PLoS One 7:e37438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaich H, Garna H, Bchir B, Besbes S, Paquot M, Richel A, Blecker C, Attia H (2015) Chemical composition and functional properties of dietary fibre extracted by Englyst and Prosky methods from the alga Ulva lactuca collected in Tunisia. Algal Res 9:65–73

    Google Scholar 

  • Yaich H, Garna H, Besbes S, Paquot M, Blecker C, Attia H (2011) Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem 128:895–901

    CAS  Google Scholar 

  • Yalςın S (2014) The mechanism of heavy metal biosorption on green marine macroalga Enteromorpha linza. Clean – Soil Air Water 42:251–259

    Google Scholar 

  • Yamasaki S, Matsuda M, Yamauchi T, Hirata H (1996) Effects of light and water temperature on the growth of Ulva sp. in a fish culture farm. Aquacult Sci 44:413–418

    Google Scholar 

  • Ye NH, Zhang XW, Mao YZ, Liang CW, Xu D, Zhou J, Zhuang ZM, Wang QY (2011) ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecol Res 26:477–485

    Google Scholar 

  • Yildiz G, Celikler S, Vatan O, Dere S (2012) Determination of the anti-oxidative capacity and bioactive compounds in green seaweed Ulva rigida C. Agardh. Int J Food Prop 15:1182–1189

    CAS  Google Scholar 

  • Yoshida G, Uchimura M, Hiraoka M (2015) Persistent occurrence of floating Ulva green tide in Hiroshima Bay, Japan: seasonal succession and growth patterns of Ulva pertusa and Ulva spp. (Chlorophyta, Ulvales). Hydrobiologia 758:223–233

    Google Scholar 

  • Zechman FW, Theriot EC, Zimmer EA, Chapman RL (1990) Phylogeny of the Ulvophyceae (Chlorophyta): cladistic analysis of nuclear-encoded rRNA sequence data. J Phycol 26:700–710

    CAS  Google Scholar 

  • Zechman FW (2003) Phylogeny of the Dasycladales (Chlorophyta, Ulvophyceae) based on analyses of rubisco large subunit (rbcL) gene sequences. J Phycol 39:819–827

    CAS  Google Scholar 

  • Zhao J, Jiang P, Qin S, Liu X, Liu Z, Lin H, Li F, Chen H, Wu C (2015) Genetic analyses of floating Ulva prolifera in the Yellow Sea suggest a unique ecotype. Estuar Coast Shelf Sci 163:96–102

    CAS  Google Scholar 

  • Zhuang Y, Guo J, Chen L, Li D, Liu J, Ye N (2012) Microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production by acid catalysis. Bioresour Technol 116:133–139

    CAS  PubMed  Google Scholar 

  • Zollmann M, Robin A, Prabhu M, Polikovsky M, Gillis, Greiserman S, Golberg A (2019) Green technology in green macroalgal biorefineries. Phycologia 58:516–534

    Google Scholar 

  • Zhu D, Wen X, Xuan X, Li S, Li Y (2016) The green alga Ulva lactuca as a potential ingredient in diets for juvenile white spotted snapper Lutjanus stellatus Akazaki. J Appl Phycol 28:703–711

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Director, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar for the facilities. This has PRIS registration number CSIR-CSMCRI 7/2020.

Funding

The financial support from the Council for Scientific and Industrial Research, New Delhi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav A. Mantri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantri, V.A., Kazi, M.A., Balar, N.B. et al. Concise review of green algal genus Ulva Linnaeus. J Appl Phycol 32, 2725–2741 (2020). https://doi.org/10.1007/s10811-020-02148-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02148-7

Keywords

Navigation