Skip to main content

Advertisement

Log in

Diversification and biogeography of Dawkinsia (Teleostei: Cyprinidae) in the Western Ghats-Sri Lanka biodiversity hotspot

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The cyprinid genus Dawkinsia comprises 13 species distributed in lowland streams and rivers in southern peninsular India and Sri Lanka. Eleven species are endemic to India, largely restricted to streams draining the Western Ghats, while one is confined to the Knuckles Hills of Sri Lanka. One species, D. filamentosa, has a wide range, straddling the island and mainland. Here, based on 135 samples representative of all 13 species, collected from 45 locations in India and 17 in Sri Lanka, we present phylogenetic and phylogeographic analyses of Dawkinsia. We use two mitochondrial markers—cytochrome b and cytochrome c oxidase subunit 1. Dawkinsia is recovered as paraphyletic with respect to Sahyadria, with strong node support. The ‘filamentosa group’ which includes both Sri Lankan and Indian taxa (D. filamentosa, D. crassa, D. rohani, D. exclamatio, D. srilankensis, D. tambraparniei, D. arulius, D. rubrotincta and D. uttara) is recovered as the sister group of Sahyadria, a genus confined to the Western Ghats. The ‘assimilis group’, which consists entirely of Indian endemics (D. assimilis, D. austellus, D. apsara and D. lepida), is recovered as the sister group of the ‘filamentosa group’ + Sahyadria. Ancestral-range estimates indicate two colonization events from India to Sri Lanka, across the Palk Isthmus. The first of these, in the Pliocene, involved the common ancestor of D. tambraparniei and D. srilankensis, while the second was of D. filamentosa in the late Pleistocene. Dawkinsia filamentosa shows little phylogeographic structure within or between Sri Lanka and India. Ancestral-range analyses suggest that neither the Palghat nor Shencottah Gaps acted as barriers to the north–south dispersal of Dawkinsia along the Western Ghats. Instead, these valleys appear to have offered lowland passages for west–east colonization by some ancestral species across the Western Ghats ridge. Despite the Palk Isthmus having been subaerial for much of the Plio-Pleistocene and serving as the only terrestrial biotic corridor connecting Sri Lanka to the Asian mainland, it appears to have served also as a climatic filter to dispersal following the aridification of south-eastern India during the Late Miocene/early Pliocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its additional files] and available in the NCBI database (https://www.ncbi.nlm.nih.gov/). The newly generated cytb and cox1 sequences in this study were deposited in GenBank under accession numbers MZ302376–MZ302390 and MZ293758–MZ293772, respectively.

References

  • Anonymous. (1977). Admiralty chart, India and Sri Lanka-Cochin to Vishakapatnam. Taunton: UK Hydrographic Office

  • Anoop, V. K., Dahanukar, N., Philip, S., Thomas, L., & Raghavan, R. (2018). Phylogeny of the hillstream loach genus Mesonoemacheilus reveals widespread diversification through ancient drainage connections in the Western Ghats Biodiversity Hotspot. Molecular Phylogenetics and Evolution, 129, 77–84. https://doi.org/10.1016/j.ympev.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  • Ashton, P. (2014). On the forests of tropical Asia: lest the memory fade. Kew: Royal Botanic Gardens.

  • Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  • Bhagwat, R. M., Banu, S., Dholakia, B. B., Kadoo, N. Y., Lagu, M. D., & Gupta, V. S. (2014). Evaluation of genetic variability in Symplocos laurina Wall. from two biodiversity hotspots of India. Plant Systematics and Evolution, 300(10), 2239–2247. https://doi.org/10.1007/s00606-014-1046-4

    Article  Google Scholar 

  • Bose, R., Ramesh, B. R., Pélissier, R., & Munoz, F. (2019). Phylogenetic diversity in the Western Ghats biodiversity hotspot reflects environmental filtering and past niche diversification of trees. Journal of Biogeography, 46(1), 145–157. https://doi.org/10.1111/jbi.13464

    Article  Google Scholar 

  • Bossuyt, F., Meegaskumbura, M., Beenaerts, N., Gower, D. J., Pethiyagoda, R., Roelants, K., et al. (2004). Local endemism within the Western Ghats-Sri Lanka biodiversity hotspot. Science, 306(5695), 479–481. https://doi.org/10.1126/science.1100167

    Article  CAS  PubMed  Google Scholar 

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., et al. (2014). BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britz, R., Conway, K. W., & Rüber, L. (2014). Miniatures, morphology and molecules: Paedocypris and its phylogenetic position (Teleostei, Cypriniformes). Zoological Journal of the Linnean Society, 172(3), 556–615. https://doi.org/10.1111/zoj.12184

    Article  Google Scholar 

  • Chen, W.-J., Lavoué, S., & Mayden, R. L. (2013). Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei). Evolution, 67(8), 2218–2239. https://doi.org/10.1111/evo.12104

    Article  PubMed  Google Scholar 

  • Chernomor, O., von Haeseler, A., & Minh, B. Q. (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65(6), 997–1008. https://doi.org/10.1093/sysbio/syw037

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuvier, G., & Valenciennes, A. (1844). Histoire naturelle des poissons. Levrault, Strassbourg, xxiii+497 pp., pls. 487–519.

  • Dahanukar, N., Raut, R., & Bhat, A. (2004). Distribution, endemism and threat status of freshwater fishes in the Western Ghats of India: Freshwater fishes of the Western Ghats. Journal of Biogeography, 31(1), 123–136. https://doi.org/10.1046/j.0305-0270.2003.01016.x

    Article  Google Scholar 

  • Day, F. (1868). On some new fishes from Madras. Proceedings of the Zoological Society of London, 1868, 192–199.

  • Deraniyagala, P. E. P. (1958). The Pleistocene of Ceylon. Ceylon: Ceylon National Museum.

  • Epa, R., Perera, N., Manamendra-Arachchi, K., & Meegaskumbura, M. (2012). Sri Lanka’s Aruwakkalu fossil deposit dates to the Burdigalian Age. Ceylon Journal of Science (biological Sciences), 40(2), 163–174. https://doi.org/10.4038/cjsbs.v40i2.3933

    Article  Google Scholar 

  • Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Fu, Y. X., & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics, 133, 693–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GEBCO Bathymetric Compilation Group. (2020). The GEBCO_2020 Grid - a continuous terrain model of the global oceans and land. UK: British Oceanographic Data Centre, National Oceanography Centre, NERC. Available at: https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9.

  • Goonatilake, S. de A., Fernando, M., Kotagama, O., Perera, N., VIdanage, S., Weerakoon, D., et al. (2020). The national red list of sri lanka: assessment of the threat status of the freshwater fishes of Sri Lanka 2020. Colombo: IUCN, International Union for Conservation of Nature, Sri Lanka, the Biodiversity Secretariat, Ministry of Environment and Wildlife Resources.

  • Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 30. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Guleria, J. S. (1992). Neogene vegetation of peninsular India. Palaeobotanist, 40, 285–311.

    Google Scholar 

  • Gunatilleke, N., Gunatilleke, S., & Ashton, P. S. (2017). South-west Sri Lanka: A floristic refugium in South Asia. Ceylon Journal of Science, 46(5), 65–78. https://doi.org/10.4038/cjs.v46i5.7454

    Article  Google Scholar 

  • Gunnell, Y., & Radhakrishna, B. P. (2001). Sahyādri: The great escarpment of the Indian subcontinent: Patterns of landscape development in the Western Ghats. Geological Society of India.

    Google Scholar 

  • Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294(5550), 2310–2314. https://doi.org/10.1126/science.1065889

    Article  CAS  PubMed  Google Scholar 

  • Hutchison, C. S. (1989). Geological evolution of South-east Asia. Clarendon Press.

    Google Scholar 

  • IUCN. (2012). IUCN Red List Categories and Criteria: Version 3.1 (Second.). Gland, Switzerland and Cambridge, UK: IUCN.

  • Jacob, K., & Narayanaswami, S. (1953). The structural and drainage patterns of the Western Ghats in the vicinity of the Palghat Gap. Proceedings of the National Institute of Science, India, 20, 104–118.

    Google Scholar 

  • Jegatheesh, T. R., Rajendran, A., Kumar, A., Gupta, S. K., & Johnson, J. A. (2014). Genetic diversity phylogenetic analysis of the genus Dawkinsia filamentosa group (Actinopterygii: Cypriniformes: Cyprinidae) from southern Western Ghats, India, using mitochondrial gene sequences. International Journal of Recent Scientific Research, 5(7), 1281–1285.

    Google Scholar 

  • Jerdon, T. C. (1849). On the fresh-water fishes of southern India. Madras Journal of Literature and Science, 15, 302 – 346

  • John, L., Philip, S., Dahanukar, N., Anvar Ali, P. H., Tharian, J., Raghavan, R., & Antunes, A. (2013). Morphological and genetic evidence for multiple evolutionary distinct lineages in the endangered and commercially exploited red lined torpedo barbs endemic to the Western Ghats of India. PLoS ONE, 8(7), e69741. https://doi.org/10.1371/journal.pone.0069741

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katwate, U., Apte, D., & Raghavan, R. (2020c). Dawkinsia uttara, a new species of filament barb (Teleostei: Cyprinidae) from the Western Ghats of India. Vertebrate Zoology, 70(4), 717–730. https://doi.org/10.26049/VZ70-4-2020-11

  • Katwate, U., Knight, J. D. M., Anoop, V. K., Raghavan, R., & Dahanukar, N. (2020b). Three new species of filament barbs of the genus Dawkinsia (Teleostei: Cyprinidae) from the Western Ghats of India. Vertebrate Zoology, 70(2), 207–233. https://doi.org/10.26049/VZ70-2-2020-08

  • Katwate, U., Kumkar, P., Raghavan, R., & Dahanukar, N. (2020a). Taxonomy and systematics of the ‘Maharaja Barbs’ (Teleostei: Cyprinidae), with the description of a new genus and species from the Western Ghats, India. Zootaxa, 4803(3): 544–560. https://doi.org/10.11646/zootaxa.4803.3.9

  • Kent, D. V., & Muttoni, G. (2008). Equatorial convergence of India and early Cenozoic climate trends. Proceedings of the National Academy of Sciences, 105(42), 16065–16070. https://doi.org/10.1073/pnas.0805382105

    Article  CAS  Google Scholar 

  • Klaus, S., Morley, R. J., Plath, M., Zhang, Y.-P., & Li, J.-T. (2016). Biotic interchange between the Indian subcontinent and mainland Asia through time. Nature Communications, 7(1), 12132. https://doi.org/10.1038/ncomms12132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, R. B., Anitha, K., Watve, A., Mani, S., Rehel, S., & Arisdason, W. (2011). The status and distribution of aquatic plants of the Western Ghats. In S. Molur, K. G. Smith, B. A. Daniel, & W. R. T. Darwall (Eds.), (pp. 73–85). Cambridge, UK and Gland, Switzerland: IUCN.

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6), 1695–1701. https://doi.org/10.1093/molbev/mss020

    Article  CAS  PubMed  Google Scholar 

  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2017). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773. https://doi.org/10.1093/molbev/msw260

    Article  CAS  PubMed  Google Scholar 

  • Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  • Liao, T. Y., Kullander, S. O., & Fang, F. (2010). Phylogenetic analysis of the genus Rasbora (Teleostei: Cyprinidae). Zoologica Scripta, 39(2), 155–176. https://doi.org/10.1111/j.1463-6409.2009.00409.x

    Article  Google Scholar 

  • Matzke, N. J. (2013). Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers in Biogeography, 5, 242–248.

    Article  Google Scholar 

  • Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. Systematic Biology, 63(6), 951–970. https://doi.org/10.1093/sysbio/syu056Medlicott

  • Medlicott, H. B. & Blanford, W. T. (1893). A manual of the geology of India, chiefly compiled from the observations of the geological survey: Stratigraphical and structural geology. Calcutta: Government of India.

  • Meegaskumbura, M., Senevirathne, G., Manamendra-Arachchi, K., Pethiyagoda, R., Hanken, J., & Schneider, C. J. (2019). Diversification of shrub frogs (Rhacophoridae, Pseudophilautus) in Sri Lanka – Timing and geographic context. Molecular Phylogenetics and Evolution, 132, 14–24. https://doi.org/10.1016/j.ympev.2018.11.004

    Article  PubMed  Google Scholar 

  • Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., et al. (2005). The phanerozoic record of global sea-level change. Science, 310(5752), 1293–1298. https://doi.org/10.1126/science.1116412

    Article  CAS  PubMed  Google Scholar 

  • Miller, K. G., Mountain, G., Wright, J., & Browning, J. (2011). A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography, 24(2), 40–53. https://doi.org/10.5670/oceanog.2011.26

    Article  Google Scholar 

  • Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) (pp. 1–8). Presented at the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA: IEEE. https://doi.org/10.1109/GCE.2010.5676129

  • Minh, B. Q., Nguyen, M. A. T., & von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5), 1188–1195. https://doi.org/10.1093/molbev/mst024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittermeier, R. A., Robles, G. P., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., et al. (2004). Hotspots revisited: Earth’s biologically richest and most endangered ecoregions. Mexico City, Mexico: CEMEX.

  • MOE. (2012). The National Red List 2012 of Sri Lanka; Conservation Status of the Fauna and Flora. Colombo: Ministry of Environment.

  • Morley, R. J. (2018). Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. Journal of Tropical Ecology, 34(4), 209–234. https://doi.org/10.1017/S0266467418000202

    Article  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Nayar, M. P., & Ahmed, M. (1984). Phytogeographical significance of endemic genera (angiosperms) in peninsular India and Sri Lanka. Bulletin of the Botanical Survey of India, 26, 65–70.

    Google Scholar 

  • Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  • Pethiyagoda, R. (1991). Freshwater fishes of Sri Lanka. Colombo, Sri Lanka: Wildlife Heritage Trust.

  • Pethiyagoda, R., & Kottelat, M. (2005). A review of the barbs of the Puntius filamentosus group (Teleostei: Cyprinidae) of southern India and Sri Lanka. Raffles Bulletin of Zoology, 12, 127–144.

    Google Scholar 

  • Pethiyagoda, R., Maduwage, K., & Meegaskumbura, M. (2012). A synopsis of the South Asian fishes referred to Puntius (Pisces: Cyprinidae). Ichthyological Exploration of Freshwaters, 23(1), 69–95.

    Google Scholar 

  • Radhakrishna, T., Asanulla, R. M., Venkateshwarlu, M., Soumya, G. S., & Prachiti, P. K. (2019). Mechanism of rift flank uplift and escarpment formation evidenced by Western Ghats, India. Scientific Reports, 9(1), 10511. https://doi.org/10.1038/s41598-019-46564-3

    Article  CAS  Google Scholar 

  • Ramasamy, S. M., & Saravanavel, J. (2019). Drowned valleys of Vaigai and Tamiraparani rivers in the Gulf of Mannar region, India. Current Science, 16(12), 1958–1960.

    Google Scholar 

  • Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Tracer. http://tree.bio.ed.ac.uk/software/tracer/

  • Ratnayake, A. S., & Sampei, Y. (2015). Characterization of organic matter and depositional environment of the Jurassic small sedimentary basins exposed in the northwest onshore area of Sri Lanka. Researches in Organic Geochemistry, 31, 15–28. https://doi.org/10.20612/rog.31.1_15

  • Ree, R. H., & Sanmartín, I. (2018). Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography, 45(4), 741–749. https://doi.org/10.1111/jbi.13173

    Article  Google Scholar 

  • Ree, R. H., & Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57(1), 4–14. https://doi.org/10.1080/10635150701883881

    Article  PubMed  Google Scholar 

  • Rema Devi, K., Indra, T. J., & Knight, J. D. M. (2010). Puntius rohani (Teleostei: Cyprinidae), a new species of barb in the Puntius filamentosus group from the southern Western Ghats of India. Journal of Threatened Taxa, 2, 1121–1129. https://doi.org/10.11609/JoTT.o2505.1121-9

  • Ren, Q., Yang, L., Chang, C., & Mayden, R. L. (2020). Molecular phylogeny and divergence of major clades in the Puntius complex (Teleostei: Cypriniformes). Zoologica Scripta, 49(6), 697–709. https://doi.org/10.1111/zsc.12442

    Article  Google Scholar 

  • Reuter, M., Harzhauser, M., & Piller, W. E. (2021). The role of sea-level and climate changes in the assembly of Sri Lankan biodiversity: A perspective from the Miocene Jaffna Limestone. Gondwana Research, 91, 152–165. https://doi.org/10.1016/j.gr.2020.12.014

    Article  Google Scholar 

  • Ritchie, A. M., Lo, N., & Ho, S. Y. W. (2016). The impact of the tree prior on molecular dating of data sets containing a mixture of inter- and intraspecies sampling. Systematic Biology, 66(3), 413–425. https://doi.org/10.1093/sysbio/syw095

    Article  Google Scholar 

  • Robin, V. V., Sinha, A., & Ramakrishnan, U. (2010). Ancient geographical gaps and paleo-climate shape the phylogeography of an endemic bird in the Sky Islands of Southern India. PLoS ONE, 5(10), e13321. https://doi.org/10.1371/journal.pone.0013321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robin, V. V., Vishnudas, C. K., Gupta, P., & Ramakrishnan, U. (2015). Deep and wide valleys drive nested phylogeographic patterns across a montane bird community. Proceedings of the Royal Society b: Biological Sciences, 282(1810), 20150861. https://doi.org/10.1098/rspb.2015.0861

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  • Rüber, L., Britz, R., Kullander, S. O., & Zardoya, R. (2004). Evolutionary and biogeographic patterns of the Badidae (Teleostei: Perciformes) inferred from mitochondrial and nuclear DNA sequence data. Molecular Phylogenetics and Evolution, 32(3), 1010–1022. https://doi.org/10.1016/j.ympev.2004.04.020

    Article  CAS  PubMed  Google Scholar 

  • Rüber, L., Britz, R., & Zardoya, R. (2006). Molecular phylogenetics and evolutionary diversification of labyrinth fishes (Perciformes: Anabantoidei). Systematic Biology, 55(3), 374–397. https://doi.org/10.1080/10635150500541664

    Article  PubMed  Google Scholar 

  • Rüber, L., Kottelat, M., Tan, H., Ng, P. K., & Britz, R. (2007). Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world’s smallest vertebrate. BMC Evolutionary Biology, 7(1), 38. https://doi.org/10.1186/1471-2148-7-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidharthan, A., Raghavan, R., Anoop, V. K., Philip, S., & Dahanukar, N. (In press). Riddle on the riffle: Miocene diversification and biogeography of endemic mountain loaches (Cypriniformes: Balitoridae) in the Western Ghats Biodiversity Hotspot. Journal of Biogeography, 47(12), 2741–2754. https://doi.org/10.1111/jbi.13972

  • Silas, E. G. (1954). New fishes from the Western Ghats, with notes on Puntius arulius (Jerdon), Records of the Indian Museum (Calcutta), 51, 27–37.

  • Simon, A., & Mohankumar, K. (2004). Spatial variability and rainfall characteristics of Kerala. Proceedings of the Indian National Science Academy, 113(2), 211–221.

    Google Scholar 

  • Senanayake, F. R. (1985). Barbus srilankensis, a new species of cyprinid fish from Sri Lanka. Ceylon Journal of Science (Biological Sciences), 15, 165–172.

  • Somasekaram, T., Perera, L. A. G., Perera, M. P., de Silva, M. B. G., Karunanayake, M. M., & Epitawatte, D. S. (1988). The National Atlas of Sri Lanka. Colombo: Survey Department.

  • Sudasinghe, H., Adamson, E. A. S., Ranasinghe, R. H. T., Meegaskumbura, M., Ikebe, C., & Britz, R. (2020e). Unexpected species diversity within Sri Lanka’s snakehead fishes of the Channa marulius group (Teleostei: Channidae). Zootaxa, 4747(1), 113–132. https://doi.org/10.11646/zootaxa.4747.1.4

  • Sudasinghe, H., Dahanukar, N., Raghavan, R., Senavirathna, T., Shewale, D. J., Paingankar, M. S., Amarasinghe, A., Pethiyagoda, R., Rüber, L., & Meegaskumbura, M. (2021). Island colonization by a ‘rheophilic’ fish: The phylogeography of Garra ceylonensis (Teleostei: Cyprinidae) in Sri Lanka. Biological Journal of the Linnean Society, 132(4), 872–893. https://doi.org/10.1093/biolinnean/blaa221

    Article  Google Scholar 

  • Sudasinghe, H., Herath, J., Pethiyagoda, R., & Meegaskumbura, M. (2018a). Undocumented translocations spawn taxonomic inflation in Sri Lankan fire rasboras (Actinopterygii, Cyprinidae). PeerJ, 6, e6084. https://doi.org/10.7717/peerj.6084

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudasinghe, H., Pethiyagoda, R., & Meegaskumbura, M. (2019). A review of the genus Esomus in Sri Lanka (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters, 29(4), 343–360. https://doi.org/10.23788/IEF-1106

  • Sudasinghe, H., Pethiyagoda, R., & Meegaskumbura, M. (2020c). Evolution of Sri Lanka’s Giant Danios (Teleostei: Cyprinidae: Devario): Teasing apart species in a recent diversification. Molecular Phylogenetics and Evolution, 149, 106853. https://doi.org/10.1016/j.ympev.2020.106853

    Article  PubMed  Google Scholar 

  • Sudasinghe, H., Pethiyagoda, R., & Meegaskumbura, M. (2020d). A molecular phylogeny of the genus Laubuka (Teleostei: Cyprinidae) in Sri Lanka reveals multiple origins and a cryptic species. Systematics and Biodiversity, 18(6), 592–613. https://doi.org/10.1080/14772000.2020.1771468

    Article  Google Scholar 

  • Sudasinghe, H., Pethiyagoda, R., Meegaskumbura, M., Maduwage, K., & Britz, R. (2020f). Channa kelaartii, a valid species of dwarf snakehead from Sri Lanka and southern peninsular India (Teleostei: Channidae). Vertebrate Zoology, 70(2), 157–170. https://doi.org/10.26049/VZ70-2-2020-05

  • Sudasinghe, H., Pethiyagoda, R., Raghavan, R., Dahanukar, N., Rüber, L., & Meegaskumbura, M. (2020a). Diversity, phylogeny and biogeography of Systomus (Teleostei, Cyprinidae) in Sri Lanka. Zoologica Scripta, 49, 710–731. https://doi.org/10.1111/zsc.12445

    Article  Google Scholar 

  • Sudasinghe, H., Pethiyagoda, R., Ranasinghe, R. H. T., Raghavan, R., Dahanukar, N., & Meegaskumbura, M. (2020b). A molecular phylogeny of the freshwater-fish genus Rasbora (Teleostei: Cyprinidae) in Sri Lanka reveals a remarkable diversification-and a cryptic species. Journal of Zoological Systematics and Evolutionary Research, 58, 1076–1110. https://doi.org/10.1111/jzs.12395

    Article  Google Scholar 

  • Sudasinghe, H., Ranasinghe, R. H. T., Goonatilake, S. de A., & Meegaskumbura, M. (2018b). A review of the genus Labeo (Teleostei: Cyprinidae) in Sri Lanka. Zootaxa, 4486(3), 201–235. https://doi.org/10.11646/zootaxa.4486.3.1

  • Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, M., & Armbruster, J. W. (2018). Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi). Zootaxa, 4476(1), 6–39. https://doi.org/10.11646/zootaxa.4476.1.4

  • Tang, K. L., Agnew, M. K., Hirt, M. V., Sado, T., Schneider, L. M., Freyhof, J., et al. (2010). Systematics of the subfamily Danioninae (Teleostei: Cypriniformes: Cyprinidae). Molecular Phylogenetics and Evolution, 57(1), 189–214. https://doi.org/10.1016/j.ympev.2010.05.021

    Article  PubMed  Google Scholar 

  • Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., & Minh, B. Q. (2016). W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1), W232–W235. https://doi.org/10.1093/nar/gkw256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27(2), 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

    Article  PubMed  Google Scholar 

  • Van Bocxlaer, I., Biju, S. D., Willaert, B., Giri, V. B., Shouche, Y. S., & Bossuyt, F. (2012). Mountain-associated clade endemism in an ancient frog family (Nyctibatrachidae) on the Indian subcontinent. Molecular Phylogenetics and Evolution, 62(3), 839–847. https://doi.org/10.1016/j.ympev.2011.11.027

    Article  PubMed  Google Scholar 

  • Vidya, T. N. C., Fernando, P., Melnick, D. J., & Sukumar, R. (2005). Population differentiation within and among Asian elephant (Elephas maximus) populations in southern India. Heredity, 94(1), 71–80. https://doi.org/10.1038/sj.hdy.6800568

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar, S. P., Menezes, R. C., Jayarajan, A., & Shanker, K. (2016). Glaciations, gradients, and geography: Multiple drivers of diversification of bush frogs in the Western Ghats Escarpment. Proceedings of the Royal Society b: Biological Sciences, 283(1836), 20161011. https://doi.org/10.1098/rspb.2016.1011

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace, A. R. (1876). The geographical distribution of animals, with a study of the relations of living and extinct faunas as elucidating the past changes of the earth’s surface. Harper and Brothers.

    Google Scholar 

  • Wang, T., Li, G., Aitchison, J. C., & Sheng, J. (2020). Eocene ostracods from southern Tibet: Implications for the disappearance of Neo-Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 539, 109488. https://doi.org/10.1016/j.palaeo.2019.109488

    Article  Google Scholar 

  • Weerakoon, W. A. P., Aggarwal, N., Jha, N., Jayasena, H. A. H., Joshi, H., Yakandawala, D., et al. (2019). Reconstruction of the Upper Gondwana palaeoclimates based on palynostratigraphy, palynofacies and sedimentology of the Jurassic sequences in the Tabbowa Basin, Sri Lanka. Journal of Asian Earth Sciences, 172, 264–278. https://doi.org/10.1016/j.jseaes.2018.09.004

    Article  Google Scholar 

  • Wu, F., He, D., Fang, G., & Deng, T. (2019). Into Africa via docked India: A fossil climbing perch from the Oligocene of Tibet helps solve the anabantid biogeographical puzzle. Science Bulletin, 64(7), 455–463. https://doi.org/10.1016/j.scib.2019.03.029

    Article  Google Scholar 

  • Yu, Y., Blair, C., & He, X. (2020). RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Molecular Biology and Evolution, 37(2), 604–606. https://doi.org/10.1093/molbev/msz257

    Article  CAS  PubMed  Google Scholar 

  • Zardoya, R., & Doadrio, I. (1999). Molecular evidence on the evolutionary and biogeographical patterns of european cyprinids. Journal of Molecular Evolution, 49(2), 227–237. https://doi.org/10.1007/PL00006545

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HS and MM are grateful to the Director General of Wildlife Conservation and the Conservator General of Forests, Sri Lanka, for permits to carry out the fieldwork. Charana Widuranga, Dhanushka Lakshan, Kumudu Wijesooriya, and R.H. Tharindu Ranasinghe are acknowledged for assistance in the field.

Funding

Funding for this study was partly provided by the Wildlife Heritage Trust of Sri Lanka to HS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhava Meegaskumbura.

Ethics declarations

Ethics approval

Fieldwork and sampling in Sri Lanka were carried out by permission of the Department of Wildlife Conservation (Permit No. WL/3/2/59/14) and Forest Department (Permit No. R&E/RES/NFSRCM/14-16-4) to HS and MM. Methods of sampling and euthanasia (using tricaine methane sulfonate) were approved by the ethics committee of the Postgraduate Institute of Science, University of Peradeniya, at its 27th meeting held on August 4, 2017. All material derived from India are based on previous published work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendix

Appendix

See Table 3.

 Table 3 Details of the new sequences and GenBank accessions of Dawkinsia used in the molecular analyses, and their identifications based on the present study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudasinghe, H., Raghavan, R., Dahanukar, N. et al. Diversification and biogeography of Dawkinsia (Teleostei: Cyprinidae) in the Western Ghats-Sri Lanka biodiversity hotspot. Org Divers Evol 21, 795–820 (2021). https://doi.org/10.1007/s13127-021-00515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-021-00515-x

Keywords

Navigation