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Between 2003 and 2005, vertebrae of 151 Xingu River Potamotrygon leopoldi (Potamotrygonidae)
(75 males and 76 females) were analysed to derive a growth curve for this species. The disc width
(WD) was significantly different between sexes, with females measuring 149–700 mm WD and males
109–500 mm WD. The average percentage error for vertebrae readings of the whole sample was 2·7%.
The marginal increment ratio (RMI) showed an increasing trend with the highest value in November,
decreasing from December on. The majority of vertebrae displaying RMI zero, occurred in September,
but the annual periodicity of ring deposition throughout the year was not conclusive. Tetracycline
(TCN) injected specimens were held in captivity for 13 months and displayed a fluorescent mark in
vertebrae confirming a yearly periodicity of band pair formation with the translucent ring deposited in
September–October. The Akaike information criterion (AIC) showed that, among the seven models
considered, the best fit was obtained for the von Bertalanffy modified with W0 (where W0 =WD
at birth) for both sexes. Growth parameters for females were: W0 = 149 mm; W∞ = 763·06 mm;
k= 0·12 year– 1, whereas for males: W0 = 109 mm; W∞ = 536·4 and k= 0·22 year−1. Maximal ages
were 7·2 years in males and 14·3 years in females. The species shows sexual dimorphism expressed
in the growth pattern, size at maturity, longevity and asymptotic sizes. Concern for sustainability is
raised due to the construction of the Belo Monte Hydroelectric Power Plant (2015 and 2016) in the
State of Pará causing changes to the habitat of this species, which is endemic to the Xingu River and
two of its tributaries.
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INTRODUCTION

The Xingu River, Brazil is a 2500 km tributary of the Amazon River in Brazil, which
shelters the Xingu River stingray Potamotrygon leopoldi Castex & Castello 1970,
a valuable species in the international ornamental trade due to its attractive colour
patterns. The species belongs to the Potamotrygonidae, a family which is found in the
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Neotropical region and is the only family comprising exclusively freshwater species
(Compagno & Cook, 1995).

The construction and operation of the Belo Monte hydroelectric power plant in 2015
to 2016 brought significant changes to the habitat of this species, which is endemic
to the Xingu River and two of its tributaries, the Iriri and Curuá rivers (Rosa, 1985;
Charvet-Almeida, 2006). The limited distribution of the species renders it vulnerable to
decline due to habitat degradation (Charvet-Almeida et al., 2002; Araújo et al., 2004).

Regarding fisheries, as per Charvet-Almeida et al. (2002), stingrays comprise 1%
of the total ornamental fish exports and P. leopoldi, together with another five Pota-
motrygonidae species, make up 67% of all freshwater stingrays exported from Manaus,
Amazonas state (Charvet-Almeida, 2006).

Published information on the Xingu River stingray is scant, with age and growth
studies referring to their marine counterparts of the genera Dasyatis Rafinesque 1810
(Cowley, 1997; Ismen, 2003), Himantura Müller & Henle 1837 (Tanaka & Ohnishi,
1998), Urolophus Müller & Henle 1837 (Babel, 1967; White et al., 2001) and Urotry-
gon Gill 1863 (Santander Neto, 2015), considered potential ancestors of freshwater
stingrays. Overall, females attain larger disc width (WD) than males; the former are
mature at 43–46 cm WD and the latter at 34–37 cm WD (Charvet-Almeida, 2006). Pota-
motrygon leopoldi exhibits trophodermic-matrotrophic viviparity; the gestation period
lasts c. 5–6 months and births occur over 4–5 months (Charvet-Almeida, 2006). The
reproductive cycle is strongly influenced by the alternating of wet and dry seasons,
which triggers changes in the river flow from <1000 to >20 000 m3 s−1 (dos Santos
et al., 2016).

Habitat changes caused by the Belo Monte power plant affected the area called Volta
Grande do Xingu, made up of great waterfalls following uneven terrain of ≤85 m over
160 km. A reduction of more than 80% of the water flow of the river took place, which
consequently worsened the water quality in the preferential site of the P. leopoldi.

The exploitation for ornamental or other purposes in the context of limited life-history
and population data, precludes an accurate assessment of the consequences of captures
that are needed to ensure the species survival. Information on aspects of population
dynamics such as age and growth are crucial for fishery management, but are still not
available. Owing to insufficient knowledge, the species was categorized both in IUCN
(Charvet-Almeida et al., 2009) and in national assessments (ICMBio, 2014) as Data
Deficient, preventing conservation measures being drawn up to the present date.

In view of the risk factors that include habitat changes and fishing, the goal of the
current study, on the basis of samples collected prior to the environmental changes, was
to provide estimates of age and growth required for age-based methods used for man-
agement of the species. Thus, counts of band pairs from their vertebrae were validated
for periodicity through the use of tetracycline fluorescent dyes and growth parameters
were calculated by a statistical fit to seven different growth functions.

MATERIALS AND METHODS

The site of collection corresponds to the middle portion of the Xingu River, a stretch from the
confluence with the Iriri River, upstream from the city of Altamira, through the locality known
as Kaitucá, which is located downstream from this city just before the great waterfalls. This
portion of the river totals 145 km, between 03∘ 49′ S; 52∘ 38′ W and 03∘ 34′ S; 51∘ 52′ W,
encompassing six points of collection: three upstream and three downstream from Altamira:
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Fig. 1. Sampling locations ( ) for Potamotrygon leopoldi along the Xingu River, Brazil: 1, Iriri; 2, Porção; 3,
Curicas; 4, Cotovelo; 5, Arroz Cru; 6, Kaitucá.

Iriri, Porção, Curicas, Cotovelo, Arroz Cru and Kaitucá (Fig. 1). Data collection was carried
out before the construction and operation of the Belo Monte power plant, from March 2003 to
December 2005, during the wet (February–March), the dry (July–September) and the transition
seasons. Specimens were captured using four longlines equipped with 50 hooks, sized from 6
(the smallest) to 3 (the largest). Other gear was also used to catch the sizes not attained with the
longlines, such as dip-nets, hand-lines and cast nets.

The sex of each specimen was noted and the disc widths (WD, mm) were measured. After the
posterior synarcual plaque (from the third vertebra) a sequence of five vertebrae was removed,
fixed and stored in ethyl alcohol (70 and 90% water solution, respectively); the excessive tissue
was then taken out, exposing the cleaned vertebral corpus. A single vertebra of each specimen
was isolated, dried and embedded in polyester resin. One to three sections were taken with a low
speed metallographic saw (Isomet Buehler; www.buehler.co.uk) equipped with a diamond cut-
ting disc. Longitudinal sections through the centre of the vertebrae were taken with a thickness
of 0·1–0·2 mm (Cailliet et al., 1983).

A growth band pair consisted of a translucent (narrow) ring and an opaque (wide) ring (Cas-
selman, 1983; Cailliet & Goldman, 2004) (Fig. 2), counted and measured using a compound
microscope provided with a micrometric eyepiece of ×10 magnification (1 μm unit= 1 mm),
on a black background and with reflected light. The distances from the focus of the vertebrae to
the outer margin of each translucent ring and to the margin of the vertebrae (radius) were noted.
Overall, three readings were carried out without the knowledge of individual size. Assessed
ages were compared and ages that differed were re-assessed simultaneously by both readers for
agreement (Carlson & Baremore, 2005).

The relationship between the radius of the vertebra (VR) and WD was calculated by means of
a linear regression for each sex; parameters of regressions were tested by ANCOVA.

Considering the date of collection and results of the readings, the average percentage of error

(%E) (Beamish & Fournier, 1981) was estimated (R−1) by: %E = R−1

[
R∑

i=1

(|||Xij − Xj
|||Xj

−1)]−1

100 in which R is the number of readings; Xij is the mean age of jth at the ith reading and Xj is
the mean age calculated for the jth reading.
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Fig. 2. Vertebral section (female, 576 mm disc width) of Potamotrygon leopoldi, estimated to be 10 years of age,
from the Xingu River. BM, the birth mark; 1–10 correspond to one opaque and one translucent growth-band
pair .

One attempt to validate the deposition frequency of growth marks on vertebrae was the
relative marginal increment ratio (RMI) (Panfili & Morales-Nin, 2002), analysed monthly:
RMI = (VR – Rn)(Rn – Rn – 1)−1, where VR is the vertebral radius, Rn is the last complete band
and Rn – 1 is the penultimate band. Monthly variation of opaque rings (RMI > 0·3), translucent
rings (RMI > 0 to 0·3) and rings beginning to form (RMI = 0) per month was assessed. An
ANOVA among months was performed to observe differences in the RMI values.

Additionally, four P. leopoldi captured using previously described methods, were placed indi-
vidually in plastic bags containing enough water and oxygen to be transported by plane from the
city of Altamira to the laboratory in Recife. The plastic bags were placed in styrofoam boxes to
protect the stingrays from temperature variations. This procedure allowed the validation of the
time of ring deposition to be carried out through tetracycline (TCN) labelling (Holden & Vince,
1973; Geffen, 1992). The stingrays were injected in August 2009 with TCN (35 mg kg−1) in the
coelomic cavity and held in tanks for 13 months. The tanks had 3000 l capacity with a sub-gravel
filtration system; water temperature was from 26 to 27.4∘ C with an average photoperiod of
12 h day−1. The captive P. leopoldi were fed live shrimp (Macrobrachium spp.) ad libitum twice
daily. Water quality variables were kept constant and monitored weekly.

Vertebrae were removed in August 2010 from the TCN labelled stingrays, cleaned and stored
dry in the dark. Sections were examined using reflected and transmitted ultraviolet light to
fluoresce the TCN mark (Olympus U-MF2 tetracycline filter was used with excitation filter:
387/11 nm; dichroic filter: 405 nm; barrier filter: 525/50 nm; www.getolympus.com), making
them visible under a fluorescence light microscope (OPTON; www.zeiss.com). Photographs
were taken under reflected light. The distance between the TCN mark and the edge was mea-
sured and the number of rings between the fluorescent mark and the edge was determined by
observing the section under an external light source together with the ultraviolet light of the
compound microscope.

Using the multi-model inferences approach, seven models were adjusted to pairs of relative
observed ages (relative to the anniversary date) and WD data: the von Bertalanffy (1938)
growth function (VBGM) (g1); a modified form of the VBGM (g2) fitted to ensure that
the curve passed through the mean back-calculated disc width at birth (W0); the general-
ized VBGM (g3); the two-phase growth model (TPGM, g4) (Araya & Cubillos, 2006); the
logistic model (g5) (all in Katsanevakis, 2006); the Gompertz model (g6), (Schnute, 1981);

and finally the Richards model (g7) (Richards, 1959): g1, Wt = W∞ ×
[
1 − e−k×(t−t0)

]
+ 𝜀;
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g2, Wt = W0 +
(
W∞ − W0

)
× ⌊1 − e−k1×t⌋ + 𝜀; g3, Wt = W∞ ×

[
1 − e−k2×(t−t1)

]p
+ 𝜀; g4,

Wt = W∞ × ⌊1 − e−k6×At×(t−t3)⌋ + 𝜀; g5, Wt = W∞ ×
[
1 + e−k3×(t−t2)

]−1
+ 𝜀; g6, Wt = W∞ ×

e
[
−a×e(−k4×t)

]
+ 𝜀; g7, Wt =

(
W∞

)
×
{[

1 + e(−k5×t+b)
]m}−1

+ 𝜀; where the parameter Wt is
the predicted disc width at age t; W∞ is the mean asymptotic WD; k is the relative growth
coefficient parameter; t0 is the age when disc width is theoretically zero, W0 is the WD at birth;
interpretation of k1 and t1 are similar to those of k and t0 respectively; k2 is also a growth
coefficient while t2 is the inflection point of the sigmoidal curve; At is a factor that modifies k
when age is increased (At = 1− {(h)× [(t− th)2 + 1]−1}); th is the age at which the transition
between the two phases occurs; h determines the magnitude of the maximum difference in
length at age between the VBGM and TPGM at point th; 𝜀 is the error (residual plots) for each
growth model. Parameters of these models were estimated using the Solver function of the
Excel programme (www.solver.com). In the same manner, the likelihood tools and bootstrap
iterations of the PopTools programme (Hood, 2006) were used to generate confidence intervals
of each parameter.

The Akaike information criterion (AIC, Akaike, 1974) was used to determine which model
was the best. Differences in AIC values (Δi =AICc,I – AICc,min) and the weight of evidence
(wi) (Burnham & Anderson, 2002) in favour of each model were computed to select the most
suitable models. After identifying the most plausible growth model based on the AIC, com-
parisons of growth curves by sex were performed based on the likelihood test (Kimura, 1980)
and corroborated by Cerrato (1990). The AIC values were estimated for sexes separately and
combined.

Longevity (tmax) was estimated using the Fabens (1965) equation: tmax = {5× [ln(2)]}× k−1,
where tmax represents the age and k the VBGM growth constant. Finally, the age composition
of the sample, supposedly reflecting the population, was estimated using the age-length key
proposed by Bartoo & Parker (1983) for the entire sample. Throughout the text all statistical
inferences were made at a significance level of 0·05.

RESULTS

A sample of 75 male and 76 female P. leopoldi was collected with significant dif-
ferences in size compositions by sex (Student’s t-test, t= 1·98, d.f.= 149, P< 0·01), in
which females measured 149 to 700 mm WD (modal sizes 450–600 mm WD, mean size
of 489·6± 113·5 mm WD) and males measured between 109 and 500 mm WD (modal
sizes 400–450 mm WD and mean size of 385·6± 80·9 mm WD) (Fig. 3).

There were significant differences by sex in the relationship between vertebral radius
and disc width (ANCOVA, F = 1069·93, d.f.= 1, P< 0·01; Fig. 4). The number of
bands (excluding birth marks) counted along the corpus calcareum ranged from 1 to 14
for females and 1 to 8 for males, with %E values between 0·0 and 4·8%, respectively.
Considering the total sample, a %E = 2·7% was estimated.

In regard to the marginal increment ratio, despite no specimens collected in January,
May, July and August, the mean RMI presented an increasing trend with the highest
value in November, decreasing from December onward. RMI values were almost con-
stant from February to June, not displaying significant differences (P> 0·05). Also, for
the entire period, monthly differences in RMI were not significant [ANOVA, P< 0·05;
Fig. 5(a)]. Moreover, taking into account the frequency of RMI distribution values of 0,
>0 to 0·3 and> 0·3, the highest number of vertebrae displaying RMI zero, meaning the
translucent ring at the border, occurred in September, suggesting an annual periodicity
of ring deposition [Fig. 5(b)].

© 2018 The Fisheries Society of the British Isles, Journal of Fish Biology 2018, 92, 1985–1999
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Fig. 3. Disc width (WD)-frequency distributions by sex ( , males; , females) for Potamotrygon leopoldi from
the Xingu River.

Because marginal increment analysis was not completely convincing, four individ-
uals (two females, 410 and 503 mm WD, and two males, 356 and 434 mm WD) were
held in captivity for 13 months. All specimens TCN injected displayed a fluorescent
mark on their vertebrae in August 2010. The P. leopoldi were 3 to 7 years of age and
the resulting periodicity of the band pair was once a year. The relative and observed
positions of the opaque and translucent rings determined by the TCN labelling and the
types of edges are shown in Fig. 6(a), (b). The formation of the translucent ring was
estimated to occur between September and October [Fig. 6(c)].

Because the highest RMI values occurred from September onward as well as the for-
mation of the translucent ring shown by TCN marks, ring deposition was found to take
place from that month on, having 1 September considered as the anniversary date.

The model exhibiting the best fit was the modified von Bertalanffy, with W0 (g2) for
both sexes, followed by the traditional VBGM for females and the TPGM and VBGM
models for males, which were ranked the second and third respectively (Table I),
according to the lowest AIC values (Akaike, 1974); the Δi< 2 and highest wi, in
both sexes accounting for ≥70% of the overall Akaike weight. For both sexes all
other models (g3, g4, g5, g6 and g7 for females and g3, g5, g6, g7 for males) received
low statistical support and were not found suitable. Since there were significant
differences in growth between the sexes and the modified VBGM was the best model
describing growth, parameters for females were: W0 = 149 mm; W∞ = 763·06 mm;
k= 0·12 year–1, whereas for males they were: W0 = 109 mm; W∞ = 536·4 mm and
k= 0·22 year−1 (Fig. 7).

The likelihood ratio test for the modified VBGM (chosen as the best model
according to the AIC) revealed significant differences in growth between sexes
(𝜒2 = 14·02, d.f.= 1, P< 0·05), which led to separate growth curves for each
sex (Fig. 7). The estimated AIC values were 1528·35 for separate sexes and
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Fig. 4. Relationship between vertebral radius (VR) and disc width (WD) by sex ( , , male y= 86.5x+ 77·6,
r2 = 0·93; , , female y= 88.8x+ 91·9, r2 = 0·91).

1542·41 for sexes combined, with a Δi > 2, demonstrating that the models are
dissimilar.

Sizes of males and females in the entire sample corresponded to 0+ and 7·2 years
(median age 4 years) in the former, while in the latter, ages were from 0+ to 14·3 years
(median age 8 years) (Fig. 8). According to Charvet-Almeida (2006), females reach
maturity from 431 to 460 mm WD and males became mature from 341 to 370 mm
WD, which corresponded to the ages at maturity estimated by inverted VBGM modi-
fied of 5·0–5·7 years and 3·5–4·2 years, respectively. Ultimately, 65·3% of males and
52·6% of females were immature, based from the calculated age at maturity (Fig.8).
The estimated longevity by Fabens (1965) is 28·1 years for females and 15·3 years
for males.

DISCUSSION

The highly endemic P. leopoldi is imperilled due to habitat changes and fish-
ing that favour the capture of juveniles, better prized in trade (R. Glémet, unpubl.
data). The study sample reflects the prevalence of individuals caught in shallow
waters, where some size classes were misrepresented. Males were more vulnerable
to fishing gear than females, perhaps due to their segregation behaviour displayed
by some classes, an aspect that contributed to some extent to the differential growth
by sex (Cailliet, 1990; Natanson & Kohler, 1996). Such a fishing pattern has con-
sequences for the sustainability of the population, as risk of recruitment declines
is increased.

© 2018 The Fisheries Society of the British Isles, Journal of Fish Biology 2018, 92, 1985–1999
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Referring to precision of readings, the vertebrae from P. leopoldi proved highly reli-
able for age estimations as evidenced by the low average percentage of error (%E).
Although the vertebrae of older females were more prone to reading errors due to the
overlapping of growth band pairs, the overall rate of reading errors for the entire sam-
ple of %E = 2·7%, was well below the limit proposed by Campana (2001). For other
species of the same suborder as Dasyatis chrysonota (Smith 1828) (Cowley, 1997),
Hypanus dipterurus (Jordan & Gilbert 1880) (Smith et al., 2007) and Urobatis halleri
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Fig. 6. (a) Transverse vertebral section of Potamotrygon leopoldi from the Xingu River and (b) detail with
tetracycline (TCN) fluorescent mark ( ) and last translucent ring formed ( ). (c) Diagrammatic repre-
sentation of the relative positions of the real and estimated date of capture (Catch), TCN marking (Mark),
the estimated time of TCN fluorescent mark deposition of four individuals (1–4)and post mortem sampling
(PMS).

(Cooper 1863) (Hale & Lowe, 2008), a high readability of vertebrae was also demon-
strated.

Distinct vertebral diameter gave rise to differences in VR to WD relationship
(ANCOVA, P< 0·05) implying that the analyses had to be conducted separately by
sex as was also obtained for Paratrygon aiereba (Müller & Henle 1841) from the
Rio Negro basin, Brazil (Araujo, 2011) and have been commonly found in other
elasmobranchs analysed by Natanson & Kohler (1996); Schwartz (1983); Yudin &
Cailliet (1990) and Lessa et al. (2004). The distinct growth pattern is in accordance
with the varying biological features, such as for D. chrysonota (Cowley, 1997), H.
dipterurus (Smith et al., 2007), Dasyatis pastinaca (L. 1758) (Yeldan et al., 2008) and
Hemitrygon fluviorum (Ogilby 1908) (Pierce & Bennett, 2010).
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Fig. 7. Modified von Bertalanffy growth curves from adjusted data of the relative ages and disc widths (WD) of
Potamotrygon leopoldi from the Xingu River. ±− C.I., male; , ±− C.I female.

In the present study, multi-model inferences, using several models provided AIC val-
ues of around the same magnitude. Thus, the modified VBGM and the three-parameter
VBGM were the best models for females, whereas the modified VBGM, TPGM and
the traditional VBGM provided Δi< 2 for males, which made them the best models for
this species (Katsanevakis, 2006). Moreover, the AIC weight (wi), used to quantify the
plausibility of each model (Katsanevakis & Maravelias, 2008), revealed that the modi-
fied VBGM got the highest weight (wi) among all models in both sexes (Akaike, 1974;
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Fig. 8. Age-frequency distribution by sex ( , males; , females) of Potamotrygon leopoldi from the Xingu River.
structure.
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Burnham & Anderson, 2002) and was elected the best model in the present study. The
modified VBGM is reputed for providing good fits, facilitating verification whether or
not the W0 supplied to the model is a realistic value (Cailliet et al., 2006).

Regarding the reliability of the W∞, the largest female collected in the area mea-
sured 700 mm WD (present study) and the largest male was 500 mm WD. Thus, the
W∞ generated by fitting the modified VBGM extrapolates the maximal observed size
by only 7·6 and 7·2%, respectively, which is plausible according to Campana (2001).
When considering the k value, the best model led to k= 0·123 (0·095–0·157) in females
and 0·227 (0·192–0·268) in males, characterizing a species which grows moderately
(Musick, 1999: Frisk et al., 2001).

The annual deposition of one band pair is a standard feature for batoids (Cailliet &
Goldman, 2004; Jacobsen & Bennett, 2010), a pattern also displayed by the studied
species and by the freshwater stingray P. aiereba (Araújo, 2011). In the current study
however, efforts to validate ring formation using RMI and the vertebral edge were not
completely convincing, as significant differences throughout the observed period were
not found. Thus, we considered marginal increment analyses not conclusive, providing
low support to annual periodicity and depicting only a weak tendency for periods of
low and high means during the months when the new band would be forming (Lessa
et al., 2004).

On the contrary, the TCN validation of growth ring periodicity, to our knowledge used
here for the first time in freshwater stingrays, clearly confirmed the pattern of deposition
of one opaque and one translucent ring per year. The formation of the opaque band
occurred between the winter (wet) and early summer (dry) and the translucent band
was observed in the summer (from September onwards). The completion of the band
pair in September may be related to the reproductive season (Charvet-Almeida, 2006)
taking place prior to the formation of the translucent ring.

From results obtained in the current study, dimorphism is an outstanding feature gen-
erating differences by sexes: in the maturation pattern (males of 4–5 years and females
of 6–7 years); in the growth pattern (distinct growth curves); in asymptotic size (50 mm
WD in males and 70 mm WD in females); in longevity between sexes (males 15·3 years
and females 28·1 years). Together, these constitute an expression of a dimorphic pat-
tern (Stamps, 1993), described to varying extents in species from the same group as D.
chrysonota (Cowley, 1997), Gymnura micrura (Bloch & Schneider 1801) (Yokota &
Lessa, 2006), Urotrygon microphthalmum Delsman 1941 (Santander Neto, 2015) and
Hypanus guttatus (Bloch & Schneider 1801) (Thorson, 1983; Yokota & Lessa, 2007).

Ultimately, considering the limited area of occupation, the endemic P. leopoldi
deserves conservation attention once the effects of environmental changes and fish-
ing have been thoroughly assessed, taking into account the present much-needed
age-based assessment.
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