Academia.eduAcademia.edu
Neusticosaurus_pusillus Nothosaurus mirabilis Ceresiosaurus Neusticosaurus edwardsi Keichousaurus Simosaurus Lariosaurus Cymatosaurus Corosaurus Pistosaurus Augustasaurus Meyerasaurus Elasmosaurus Styxosaurus Thalassomedon Cardiocorax Wapuskanectes Callawayasaurus Wyoming_elasmosaurid Muraenosaurus Hydrotherosaurus Seeleyosaurus Libonectes Hydralmosaurus Leptocleidus Occitanosaurus Macroplata Liopleurodon Thalassiodracon Plesiosaurus Microcleidus Tricleidus Cryptocleidus Simolestes Peloneustes Trinacromerum bentonianum Dolichorhyncops osborni Dolichorhyncops herschlensis Trinacromerum kirki RFTRA level 4 (score: 4.51) Eopolycotylus
Neusticosaurus pusillus Nothosaurus mirabilis Ceresiosaurus Keichousaurus Neusticosaurus edwardsi Lariosaurus Simosaurus Cymatosaurus Corosaurus Pistosaurus Augustasaurus Meyerasaurus Liopleurodon Macroplata Microcleidus Thalassiodracon Plesiosaurus Leptocleidus Seeleyosaurus Hydrotherosaurus Libonectes Hydralmosaurus Styxosaurus Elasmosaurus Wyoming elasmosaurid Callawayasaurus Wapuskanectes Thalassomedon Cardiocorax Occitanosaurus Muraenosaurus Tricleidus Cryptocleidus Simolestes Peloneustes Trinacromerum kirki Dolichorhyncops osborni Trinacromerum bentonianum Eopolycotylus Dolichorhyncops herschlensis RFTRA level 2 (score: 4.6)
Neusticosaurus_pusillus Nothosaurus_mirabilis Ceresiosaurus Neusticosaurus_edwardsi Keichousaurus Simosaurus Lariosaurus Cymatosaurus Corosaurus Pistosaurus Augustasaurus Meyerasaurus Elasmosaurus Thalassomedon Cardiocorax Wapuskanectes Callawayasaurus Simolestes Tricleidus Peloneustes Cryptocleidus Trinacromerum_bentonianum Dolichorhyncops_osborni Dolichorhyncops_herschlensis Trinacromerum_kirki Eopolycotylus Styxosaurus Seeleyosaurus Hydralmosaurus Libonectes Hydrotherosaurus Muraenosaurus Wyoming_elasmosaurid Leptocleidus Occitanosaurus Macroplata Liopleurodon Thalassiodracon RFTRA level 3 (score: 4.51) Plesiosaurus Microcleidus
Neusticosaurus_pusillus Elasmosaurus Lariosaurus Keichousaurus Wyoming_elasmosaurid Dolichorhyncops_osborni Dolichorhyncops_herschlensis Liopleurodon Cryptocleidus Cardiocorax Macroplata Eopolycotylus Meyerasaurus Corosaurus Microcleidus Hydralmosaurus Leptocleidus Hydrotherosaurus Augustasaurus Libonectes Callawayasaurus Cymatosaurus Heuristic level 0 (score: 5.38) Ceresiosaurus
Cymatosaurus Simosaurus gaillardoi Augustasaurus hagdorni Seeleyosaurus guilelmiimperatoris Plesiosaurus dolichodeirus 100/100 0/[13] 10.000?/100? 0.110/0 Occitanosaurus tournemirensis 27/14 1.170/0 0/[13] Hydrorion brachypterygius 0.110/0 Muraenosaurus leedsii 89/83 0/[13] Tricleidus seeleyi 0/[13] 3.000/0 0.110/0 0.110/0 Kaiwhekea kaiki 48/43 1/[9] 1.670/0 Aristonectes parvidens 0.110/0 Kimmerosaurus langhami 1/[5] 4/[11] Cryptoclidus eurymerus 0.110/0 0.110/0 Brancasaurus brancai Thalassomedon haningtoni 58/55 17/9 2.000/0 Terminonatator ponteixensis 1.010/0 Eromangasaurus australis 13/[3] 12/[4] 0.130/0 0.150/0 Callawayasaurus colombiensis Cardiocorax mukulu 9/[7] 0.150/0 16/9 0.130/0 0/[10] 0.110/0 1/[24] 0.040/0 28/16 0.040/0 Styxosaurus snowii Hydrotherosaurus_alexandrae Libonectes morgani 12/9 0.040/0 Elasmosaurus platyurus OUMNHJ.28585 Microcleidus homalospondylus 5/[22] MMUMLL8004 0/[10] 0.980/0 Atenborosaurus conybeari 0.110/0 1/[4] Thalassiodracon hawkinsi 0/[5] 0.120/0 0.110/0 Hauffiosaurus zanoni Rhomaleosaurus zetlandicus 10/5 0/[27] Eurycleidus arcuatus 1.370/0 5/[8] 0.110/0 0.810/0 Rhomaleosaurus victor 8/[7] 0.000/0 Maresaurus coccai 0/[27] Rhomaleosaurus megacephalus 7/2 0.110/0 1.090/0 Plesiosaurus macrocephalus Macroplata tenuiceps 0/[27] 0.110/0 Archaeonectrus rostratus Liopleurodon ferox 0/[27] 0.110/0 5/[2] 0.290/8 0/[27] 0.110/0 0/[27] 0.110/0 0/[27] 0.110/0 OUMNHJ.02247 BMNHR2439 1.610/0 8/[8] BEDFM1999-2001 1.050/0 4/[14] 32/14 Pliosaurus brachyspondylus 0.060/0 0/[16] 0.060/0 0.210/0 Pliosaurus brachydeirus Simolestes vorax 1/[12] 14/2 Pliosaurus andrewsi 0.210/0 1.000/0 4/[9] FHSMVP321 Kronosaurus queenslandicus 0.290/0 9/[4] Brachauchenius lucasi 10/[3] 0.290/0 Peloneustes philarchus 16/2 0.290/0 23/[1] OUMNHJ.10337 0.290/8 0.290/0 BMNH49202 Plesiopleurodon_wellesi Macroplata longirostris QMF18041 Umoonasaurus demoscyllus 16/12 0/[7] Leptocleidus superstes 50/43 0.520/0 0.010/0 0.520/0 0/[7] Leptocleidus capensis 0.010/0 Nichollssaura borealis 0/[7] Edgarosaurus muddi 0.110/0 Trinacromerum bentonianum 5/[2] 1/[6] 0.430/0 0.110/0 Manemergus anguirostris 1/[6] Thililua longicollis 0.110/0 Eopolycotylus rankini 4/[3] Polycotylus laipinnis 0.110/0 2/[12] 0.020/0 Dolichorhynchops herschelensis 2/[5] 0.020/0 Palmulasaurus quadratus 34/29 0.790/0 Dolichorhynchops osborni 6/[10] Group freqs., 100 replicates, cut=50 (tree 0) - Symmetric Resampling (P=33)/GC values, 100 replicates, cut=0 (tree 1) - Symmetric Resampling (P=33) Bremer supports (from 7319 trees, cut 0)/Relaive bremer supports (from 5807 trees, cut 0)
Neusticosaurus_pusillus Nothosaurus_mirabilis Ceresiosaurus Keichousaurus Neusticosaurus_edwardsi Lariosaurus Simosaurus Cymatosaurus Corosaurus Pistosaurus Augustasaurus Thalassiodracon Plesiosaurus Microcleidus Meyerasaurus Macroplata Liopleurodon Leptocleidus Occitanosaurus Seeleyosaurus Hydrotherosaurus Hydralmosaurus Libonectes Wyoming_elasmosaurid Wapuskanectes Callawayasaurus Styxosaurus Elasmosaurus Cardiocorax Muraenosaurus Tricleidus Cryptocleidus Simolestes Thalassomedon Peloneustes Trinacromerum_kirki Dolichorhyncops_herschlensis Eopolycotylus Trinacromerum_bentonianum Dolichorhyncops_osborni Heuristic level 2 (score: 4.44)
Neusticosaurus_pusillus Nothosaurus mirabilis Ceresiosaurus Keichousaurus Neusticosaurus edwardsi Lariosaurus Simosaurus Cymatosaurus Corosaurus Pistosaurus Augustasaurus Meyerasaurus Liopleurodon Macroplata Microcleidus Thalassiodracon Plesiosaurus Leptocleidus Seeleyosaurus Hydrotherosaurus Libonectes Hydralmosaurus Styxosaurus Elasmosaurus Wyoming elasmosaurid Callawayasaurus Wapuskanectes Thalassomedon Cardiocorax Occitanosaurus Muraenosaurus Tricleidus Cryptocleidus Simolestes Peloneustes Trinacromerum kirki Dolichorhyncops osborni Trinacromerum bentonianum Eopolycotylus Dolichorhyncops herschlensis Heuristic Level 3 (score: 4.20)
Neusticosaurus_pusillus Nothosaurus_mirabilis Ceresiosaurus Neusticosaurus_edwardsi Keichousaurus Corosaurus Simosaurus Lariosaurus Cymatosaurus Pistosaurus Augustasaurus Meyerasaurus Macroplata Liopleurodon Thalassiodracon Plesiosaurus Microcleidus Occitanosaurus Trinacromerum_bentonianum Dolichorhyncops_osborni Dolichorhyncops_herschlensis Eopolycotylus Trinacromerum_kirki Cryptocleidus Tricleidus Peloneustes Leptocleidus Thalassomedon Simolestes Wapuskanectes Cardiocorax Callawayasaurus Styxosaurus Elasmosaurus Seeleyosaurus Libonectes Hydralmosaurus Hydrotherosaurus Muraenosaurus Wyoming_elasmosaurid RFTRA level 0 (score: 4.86)
Neusticosaurus pusillus Nothosaurus mirabilis Ceresiosaurus Keichousaurus Neusticosaurus edwardsi Lariosaurus Simosaurus Cymatosaurus Corosaurus Pistosaurus Augustasaurus Meyerasaurus Macroplata Microcleidus Thalassiodracon Plesiosaurus Liopleurodon Styxosaurus Elasmosaurus Wyoming elasmosaurid Callawayasaurus Wapuskanectes Thalassomedon Cardiocorax Leptocleidus Seeleyosaurus Hydralmosaurus Libonectes Hydrotherosaurus Occitanosaurus Muraenosaurus Tricleidus Cryptocleidus Simolestes Peloneustes Trinacromerum kirki Dolichorhyncops osborni Trinacromerum bentonianum Eopolycotylus Dolichorhyncops herschlensis Heuristic level 4 (score: 4.20)
Neusticosaurus_pusillus Nothosaurus_mirabilis Ceresiosaurus Keichousaurus Neusticosaurus_edwardsi Lariosaurus Simosaurus Cymatosaurus Corosaurus Pistosaurus Augustasaurus Meyerasaurus Microcleidus Thalassiodracon Plesiosaurus Macroplata Liopleurodon Leptocleidus Simolestes Peloneustes Tricleidus Cryptocleidus Trinacromerum_bentonianum Dolichorhyncops_osborni Dolichorhyncops_herschlensis Trinacromerum_kirki Eopolycotylus Occitanosaurus Muraenosaurus Libonectes Hydrotherosaurus Seeleyosaurus Hydralmosaurus Styxosaurus Wyoming_elasmosaurid Elasmosaurus Callawayasaurus Wapuskanectes Heuristic level 1 (score: 4.38) Thalassomedon Cardiocorax
Neusticosaurus_pusillus Nothosaurus_mirabilis Ceresiosaurus Keichousaurus Neusticosaurus_edwardsi Lariosaurus Simosaurus Cymatosaurus Corosaurus Pistosaurus Augustasaurus Meyerasaurus Elasmosaurus Styxosaurus Thalassomedon Cardiocorax Wapuskanectes Callawayasaurus Wyoming_elasmosaurid Hydrotherosaurus Libonectes Seeleyosaurus Hydralmosaurus Leptocleidus Occitanosaurus Macroplata Liopleurodon Thalassiodracon Plesiosaurus Microcleidus Trinacromerum_bentonianum Dolichorhyncops_osborni Tricleidus Muraenosaurus Cryptocleidus Simolestes Peloneustes Trinacromerum_kirki Eopolycotylus Dolichorhyncops_herschlensis RFTRA level 1 (score: 4.66)
Serpianosaurus mirigiolensis Simosaurus gaillardoi 100/100 Thalassiodracon hawkinsi 10?/100? Plesiosaurus dolichodeirus 100/100 Seeleyosaurus guilelmiimperator 4/71 81/77 Occitanosaurus tournemirensis Cardiocorax nzembi 3/53 73/71 3/53 60/49 2/53 56/50 2/50 Zarafasaura oceanis Tuarangisaurus keyesi Thalassomedon haningtoni Terminonatator ponteixensis Styxosaurus snowi Microcleidus homalospondylus Elasmosauridae Libonectes morgani Kaiwhekea kaiki Hydrotherosaurus alexandrae Hydralmosaurus serpeninus Futabasaurus suzukii Eromangasaurus australis Callawayasaurus colombiensis Nichollssaura borealis 72/66 Thililua longicollis 3/50 Dolichorhynchops osborni Group freqs., 100 replicates, cut=50 (tree 0) - Symmetric Resampling (P=33)/GC values, 100 replicates, cut=0 (tree 1) - Symmetric Resampling (P=33) Bremer supports (from 58343 trees, cut 0)/Relaive bremer supports (from 35809 trees, cut 0)
5 4 6 3 2 5 6 7 4 1 3 2 8 14 7 1=13 9=10 13 12 11 8=9=10=11 12
‫۫۩ۣۖۢ۞۝یڷۢۙڷۙ۝ٰۣۣۛ۠ۙڷ‪Ғ‬ڷۧۙۗۢۙ۝ٰۣۗۧۙڷۣۚڷ۠ٷۢۦ۩ۣ‪Ђ‬ڷۧۘۢٷ۠ۦۙۜۨۙ‪І‬‬ ‫ٰ‪ۛҖІЂ‬ۦۣ‪ۘۛۙғ‬۝ۦۖۡٷۗ‪۠ۧғ‬ٷۢۦ۩ۣ۞‪ҖҖ‬ۃۤۨۨۜ‬ ‫‪ẰếẳẰẽặẬẹắẾΝẺỀẽẹẬặΝẺằΝύẰẺẾẮẴẰẹẮẰẾΝάΝύẰẺặẺẲẴẰΝẰẹ‬ڷۦۣۚڷۧۙۗ۝۪ۦۙۧڷ۠ٷۣۢ۝ۨ۝ۘۘۆ‬ ‫‪ẴẵẹậẺỀỂ‬‬ ‫ۙۦۙۜڷ۟ۗ۝۠‪Ө‬ڷۃۧۨۦۙ۠ٷڷ۠۝ٷۡٮ‬ ‫ۙۦۙۜڷ۟ۗ۝۠‪Ө‬ڷۃۣۧۢ۝ۨۤ۝ۦۗۧۖ۩ۑ‬ ‫ۙۦۙۜڷ۟ۗ۝۠‪Ө‬ڷۃۧۨۢ۝ۦۤۙۦڷ۠ٷ۝ۗۦۣۙۡۡ‪Ө‬‬ ‫ۙۦۙۜڷ۟ۗ۝۠‪Ө‬ڷۃڷۙۧ۩ڷۣۚڷۧۡۦۙے‬ ‫ۙۜۨڷۘۢٷڷٷۣ۠ۛۢۆڷۣۚڷۢٷ۝ۨۜۗ۝ۦۨۧٷٷیڷۺ۠ۦٷۙڷۙۜۨڷۣۡۦۚڷۘ۝ۦ۩ٷۣۧۡۧٷ۠ۙڷ۫ۙۢڷۆ‬ ‫ۧۦ۩ٷۣۧ۝ۧۙ۠ۤڷۢ۝ڷۙ۠ۺۨۧڷۛۢ۝ۡۡ۝۫ۧڷۣۢڷۺۣۣۛ۠ۜۤۦۣۡڷۙ۠ۘۦ۝ۛڷۣۚڷۣۧۢ۝ۨٷۗ۝۠ۤۡ۝‬ ‫ۧ۝ٷۦۣیڷ‪ғ‬ۋ‪ғҒ‬یڷۘۢٷڷ۪ۧۙ۠ٷ‪ٰۣۢç‬ڷۣ۝ۤۡ‪۠í‬ۍڷ‪ғ‬ۆڷۃۣۧۖۗٷ‪Ђ‬ڷ‪ғ‬ۋ‪ғ‬ۋڷۃۧ۩ۙۨٷیڷ‪ғ‬ۍڷۃۤ۠۩ۜۗۑڷ‪ғ‬ۑ‪ғ‬ۆڷۃۢۺۣۗ۠ێڷ‪ғЂғ‬یڷۃۣ۞‪ú‬ٷۦۆڷ‪ғ‬ې‬ ‫ھڽڷ‪Ғ‬ڷڽڷۤۤڷۃ‪Ң‬ڽڼھڷۺۦٷ۩ۢٷ‪Ђ‬ڷ‪Җ‬ڷۙ۠ۗ۝ۨۦۆڷ‪όẴẽẾếạẴẰỂ‬ڷ‪Җ‬ڷ۫۩ۣۖۢ۞۝یڷۢۙڷۙ۝ٰۣۣۛ۠ۙڷ‪Ғ‬ڷۧۙۗۢۙ۝ٰۣۗۧۙڷۣۚڷ۠ٷۢۦ۩ۣ‪Ђ‬ڷۧۘۢٷ۠ۦۙۜۨۙ‪І‬‬ ‫‪Ң‬ڽڼھڷۺۦٷ۩ۢٷ‪Ђ‬ڷڼھڷۃۙۢ۝ۣ۠ۢڷۘۙۜۧ۝۠ۖ۩ێڷۃۀۀ‪ғ‬ۀڽڼھ‪Җۢ۞ۛғ‬ۀڽڼڽ‪ғ‬ڼڽڷۃٲۍ‪ө‬‬ ‫ۀۀۀڼڼڼۀڽڿۀۀۀڿڽڼڼۑٵۨۗٷۦۨۧۖٷ‪ۛҖ‬ۦۣ‪ۘۛۙғ‬۝ۦۖۡٷۗ‪۠ۧғ‬ٷۢۦ۩ۣ۞‪ҖҖ‬ۃۤۨۨۜڷۃۙ۠ۗ۝ۨۦٷڷۧ۝ۜۨڷۣۨڷ۟ۢ۝ۋ‬ ‫ۃۙ۠ۗ۝ۨۦٷڷۧ۝ۜۨڷۙۨ۝ۗڷۣۨڷۣ۫ٱ‬ ‫ۘ۝ۦ۩ٷۣۧۡۧٷ۠ۙڷ۫ۙۢڷۆڷۧ۝ٷۦۣیڷ‪ғ‬ۋ‪ғҒ‬یڷۘۢٷڷ۪ۧۙ۠ٷ‪ٰۣۢç‬ڷۣ۝ۤۡ‪۠í‬ۍڷ‪ғ‬ۆڷۃۣۧۖۗٷ‪Ђ‬ڷ‪ғ‬ۋ‪ғ‬ۋڷۃۧ۩ۙۨٷیڷ‪ғ‬ۍڷۃۤ۠۩ۜۗۑڷ‪ғ‬ۑ‪ғ‬ۆڷۃۢۺۣۗ۠ێڷ‪ғЂғ‬یڷۃۣ۞‪ú‬ٷۦۆڷ‪ғ‬ې‬ ‫‪ۧғ‬ۦ۩ٷۣۧ۝ۧۙ۠ۤڷۢ۝ڷۙ۠ۺۨۧڷۛۢ۝ۡۡ۝۫ۧڷۣۢڷۺۣۣۛ۠ۜۤۦۣۡڷۙ۠ۘۦ۝ۛڷۣۚڷۣۧۢ۝ۨٷۗ۝۠ۤۡ۝ڷۙۜۨڷۘۢٷڷٷۣ۠ۛۢۆڷۣۚڷۢٷ۝ۨۜۗ۝ۦۨۧٷٷیڷۺ۠ۦٷۙڷۙۜۨڷۣۡۦۚ‬ ‫ۀۀ‪ғ‬ۀڽڼھ‪Җۢ۞ۛғ‬ۀڽڼڽ‪ғ‬ڼڽۃ۝ۣۘڷ‪Ң‬ڽڼھڷۍ‪ӨЂ‬ڷۣۢڷۙ۠ۖٷ۠۝ٷ۪ۆڷۃ۫۩ۣۖۢ۞۝یڷۢۙڷۙ۝ٰۣۣۛ۠ۙڷ‪Ғ‬ڷۧۙۗۢۙ۝ٰۣۗۧۙڷۣۚڷ۠ٷۢۦ۩ۣ‪Ђ‬ڷۧۘۢٷ۠ۦۙۜۨۙ‪І‬‬ ‫ۙۦۙۜڷ۟ۗ۝۠‪Ө‬ڷۃڷۣۧۢ۝ۧۧ۝ۡۦۙێڷۨۧۙ۩ۥۙې‬ ‫‪Ң‬ڽڼھڷۢٷ‪Ђ‬ڷڽھڷۣۢڷھڽ‪ғ‬ھڽھ‪ғ‬ڼڿڽ‪ғ‬ہہڷۃۧۧۙۦۘۘٷڷێٲڷۃٰ‪ۛҖІЂ‬ۦۣ‪ۘۛۙғ‬۝ۦۖۡٷۗ‪۠ۧғ‬ٷۢۦ۩ۣ۞‪ҖҖ‬ۃۤۨۨۜڷۣۡۦۚڷۘۙۘٷۣۣ۠ۢ۫‪ө‬‬ Net her lands J our n al of Ge osciences —– Geologi e en M ijnbouw | P age 1 of 12. doi: 10.1017/njg.2014.44 A new elasmosaurid from the early Maastrichtian of Angola and the implications of girdle morphology on swimming style in plesiosaurs R. Ara újo 1,2,* , M.J. Polcyn 1, A.S. Schulp 3 , O. Mateus 2,4 , L.L. Jacobs 1, A. Ol ı́mpio Gonçalves 5 & M.-L. Morais 5 1 Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas, 75275, USA 2 Museu da Lourinh~a, Rua Jo~ao Luı́s de Moura, 2530-157 Lourinh~a, Portugal 3 Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, the Netherlands and Natuurhistorisch Museum Maastricht, Maastricht, the 4 Universidade Nova de Lisboa, CICEGe, Faculdade de Ciências e Tecnologia, FCT, 2829-516 Caparica, Portugal Netherlands and Faculty of Earth and Life Sciences, Amsterdam VU University, Amsterdam, the Netherlands 5 Departamento de Geologia, Faculdade de Ciencas, Universidade Agostinho Neto, Avenida 4 de Fevereiro 7, Luanda, Angola * Corresponding author. Email: rmaraujo@smu.edu Manuscript received: 2 May 2014, accepted: 3 December 2014 Abstract We report here a new elasmosaurid from the early Maastrichtian at Bentiaba, southern Angola. Phylogenetic analysis places the new taxon as the sister taxon to Styxosaurus snowii, and that clade as the sister of a clade composed of (Hydrotherosaurus alexandrae (Libonectes morgani + Elasmosaurus platyurus)). The new taxon has a reduced dorsal blade of the scapula, a feature unique amongst elasmosaurids, but convergent with cryptoclidid plesiosaurs, and indicates a longitudinal protraction-retraction limb cycle rowing style with simple pitch rotation at the glenohumeral articulation. Morphometric phylogenetic analysis of the coracoids of 40 eosauropterygian taxa suggests that there was a broad range of swimming styles within the clade. Keywords: Plesiosauria, locomotion, pectoral girdle, Elasmosauridae, marine reptiles Introduction We report here a new elasmosaurid plesiosaur from the early Maastrichtian of Angola, and provide a description and a phylogenetic analysis. The new taxon possesses unusual features of the limb and pectoral girdle morphology that suggest a peculiar mode of locomotion; we therefore also explore the implications of girdle morphology on swimming style in a phylogenetic morphometrics framework. Plesiosaurs are members of the Eosauropterygia (Rieppel, 1994), which include pachypleurosaurs, nothosaurs and pistosaurs best known from the Middle Triassic epicontinental shallow seas of Europe and China (Rieppel, 2000). Elasmosauridae are regarded as the sister group of Cryptocleididae within Plesiosauria (Ketchum & Benson, 2010; Benson & Druckenmiller, 2014). The origin of Elasmosauridae is unclear but its record extends © Netherlands Journal of Geosciences Foundation 2014 from the mid-Hauterivian (Evans, 2012) to the end of the Maastrichtian (Vincent et al., 2011). By the earliest Jurassic, plesiosaurs were fully adapted to a pelagic lifestyle and two major Bauplans (plesiosauromorph and pliosauromorph) had emerged in multiple phylogenetic lineages (O’Keefe, 2001; Benson et al., 2012). Plesiosauromorphs have long necks and relatively small, anteriorly abbreviated heads, whereas the pliosauromorph Bauplan includes forms with larger elongate heads and relatively short necks (O’Keefe & Carrano, 2005). However, all plesiosaurs share unique features of their limbs and girdles amongst secondarily adapted Mesozoic marine reptiles. Swimming style based on paraxial quadrupedal locomotion is largely accepted (e.g. Watson, 1924; Robinson, 1975), although details of limb motion are more contentious (e.g. Thewissen & Taylor, 2007; LinghamSoliar, 2000). 1 Netherla nds Jour n al of Geos cience s —– Geo logie en M ijnbo uw The morphological transition between terrestrial forms, presumably in the early Triassic, to fully marine forms known from the Jurassic and Cretaceous involves profound reorganisation of the girdle elements along with elaboration of the limbs as paddles in a unique body plan without modern analogue. Plesiosaurs likely share a distant relationship with terrestrial sprawlers (Rieppel, 1997, 2000) and on entry to the marine realm employed paraxial rowing (Schmidt, 1984; Storrs, 1986; Lin & Rieppel, 1998; for a different opinion see Sues, 1987). Within Diapsida, there are two primary modes of aquatic locomotion: limb-based swimming (e.g. turtles, penguins) and trunk-and-tail-based lateral undulation (e.g. varanoids, iguanids, crocodyliforms). Among extant paraxial swimmers there are two main styles: rowing (e.g. trionychid turtles) and underwater flying (e.g. sea turtles). In underwater rowing the main locomotory vector components are protraction and retraction, whereas in underwater f lying the main locomotory vector component is adduction and abduction (Carpenter et al., 2010). Within plesiosaurs, both rowing and underwater flying have been proposed (Watson, 1924; Robinson, 1975; Carpenter et al., 2010). Araújo & Correia (in press) provide a detailed analysis of the pectoral myology of plesiosaurs. In this contribution, we first describe the osteology of the new taxon and perform a character-based parsimony analysis to determine its phylogenetic position. We then perform an additional analysis employing a continuously variable morphometric character, a quantification of coracoid shape, to develop a testable model of evolution for this bone in Eosauropterygia. We conclude with a brief discussion of the implications of girdle and limb morphology and musculature variation on swimming style in plesiosaurs. Materials and methods Institutional abbreviations CMN – Canadian Museum of Nature, Ottawa, Canada; IVPP – Institute for Vertebrate Paleontology and Paleoanthropology, Beijing, China; KHM – Kaikoura Historical Museum, Kaikoura, New Zealand; MGUAN – Museu de Geologia da Universidade Agostinho Neto, Luanda, Angola; SMF – Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt, Germany; TMM – Texas Memorial Museum, Texas, USA; YPM – Yale Peabody Museum, New Haven, USA. Materials MGUAN PA103 (Figs 2 and 3), complete pectoral and pelvic girdle, cervical and dorsal vertebrae, partial forelimb (humerus, radius and ulna and isolated phalanges) and several dorsal ribs. MGUAN PA270 (Mateus et al., 2012, Figure 11), pubis, ischium, femur and completely articulated posterior limb. 2 Phylogeny Phylogenetic analyses of the new taxon used the data matrix of 177 characters and 67 taxa modified from Ketchum & Benson (2010), with the nothosaurid Cymatosaurus, as the outgroup. Codings can be found in the Appendix. The analysis was run in TNT v1.1 (Goloboff et al., 2008) with 20 independent hits using the defaults of ‘xmult’ command and 10 cycles of tree drifting (Goloboff et al., 2008). Tree Fuse was run with 22 replicates and over 1 3 109 rearrangements. A single parsimonious tree was retrieved with a tree length of 1136.78. Resampling scores were calculated using 100 replications of symmetric resampling (Goloboff et al., 2003). Each data set was analysed with a single addition and the resulting tree collapsed with tree bisection reconnection (TBR) (Goloboff & Farris, 2001). Group supports were calculated by TBR-swapping the trees, and registering of the number of steps needed to unite a clade. Both absolute (Bremer, 1994) and relative Bremer supports are presented (Goloboff & Farris, 2001). Continuous characters (both meristic and non-meristic) were analysed as such (Goloboff et al., 2006), i.e. ranges and ratios were plotted in the matrix with the actual values, without the need to create arbitrary groupings. Vincent et al. (2011) matrix was also coded and is 67 characters 3 22 taxa, focused particularly on elasmosaurid taxa (10 out of 23). The outgroup included the pachypleurosaur Serpianosaurus and the nothosaur Simosaurus. Phylogenetics morphometrics In order to develop a testable model of morphological evolution of the coracoid, we also performed a phylogenetic morphometric analysis following the methods of Catalano et al. (2010) and Goloboff & Catalano (2011). Phylogenetic morphometrics employs Farris optimisation by applying parsimony analysis to 2D or 3D spatial continuum (Catalano et al., 2010) using homologous landmarks. A set of landmarks is regarded as a single character by the algorithm. In this case, one character with 14 landmarks was used, forming the character ‘outline shape of the right coracoid in ventral view’. Forty pachypleurosaur, nothosaur, pistosaur and plesiosaur taxa were scored. For further information see Supplementary Material. Systematic paleontology SAUROPTERYGIA Owen, 1860 EOSAUROPTERYGIA Rieppel, 1994 PLESIOSAURIA de Blainville, 1835 ELASMOSAURIDAE Cope, 1869 sensu Ketchum & Benson, 2010 Cardiocorax mukulu gen. et sp. nov. Holotype – MGUAN PA103, complete pectoral and pelvic girdle, cervical and dorsal vertebrae, partial forelimb (humerus, radius and ulna, and isolated phalanges) and several dorsal ribs. Referred specimen – MGAUN PA270 is a more incomplete specimen preserving a pelvic girdle and a single hind limb in Net her lands Jour nal of Geos ciences —– Ge ologie en M ijnbouw articulation. This specimen was found in the same horizon at about 7 m from the holotype. Etymology – Genus name refers to the heart-shaped fenestra between the coracoids derived from the Latinised Greek Kardia and Latinised Greek corax, meaning raven or crow, which also gives rise to the name ‘coracoid’. The species name mukulu means ‘ancestor’ in Angolan Bantu dialects. Locality and horizon – Southern Angola, Namibe Province, Bentiaba, Bench 19 (Fig. 1), Mocuio Formation of the S~ao Nicolau Group (Cooper, 2003), Namibe Basin (Jacobs et al., 2006). Strganac et al. (2014) reports the age of this interval (Bench 19) as early Maastrichtian (71.40–71.64 Ma). Diagnosis – Cardiocorax mukulu is characterised by the following autapomorphies: coracoid, bilateral ventral buttress of the coracoid asymmetrical; scapula, highly reduced dorsal blade of the scapula, medial contact between scapulae and clavicles extending along all of their medial surface, scapular shaft with ellipsoid cross-section broadly splaying anteriorly; clavicle, clavicular ventral area nearly as broad as the scapular area, median contact between clavicles extend along all their medial length; cervical vertebrae, the posterior cervical neural spines have an angled apex, the posterior cervical neural spines nearly touch its adjacent neural spines, transversally broad neural spines: length of base of neural spines slightly smaller to centrum length. A Description The holotype (MGUAN PA103) preserves five cervical and one dorsal vertebrae, proximal portions of dorsal ribs, the complete pectoral and pelvic girdles, and a partial forelimb (humerus, radius and ulna, and isolated phalanges). Preservation is generally good, with little or no plastic deformation, but exhibits some recent weathering. Referred specimen MGUAN PA270 is a more complete articulated limb and pelvic girdle, and augments the description of these elements. Vertebrae and ribs A continuous series of five complete cervical vertebrae and one anterior cervical lacking the neural spine and neural arch, and one dorsal centrum (Fig. 2) are preserved in MGUAN PA 103. The first isolated cervical preserved has a binocular-shaped articular facet. The vertebral centrum has a lateral longitudinal ridge and a ventral keel at mid-height and mid-width, respectively. The foramina subcentralia perforate from the ventral to the dorsal side of the vertebra and are surrounded by a broader ventral concavity. The neural arch arises slightly medial to the articular facet. The circular articular facets are visible in posterior cervicals. The lateral keel is visible in one posterior cervical that extends along the dorsal third of the centrum, being more B Fig. 1. A. Geographical location of the locality in Angola. B. Geological context and stratigraphic column with the position of Bench 19, the layer which produced the specimens described herein. 3 Netherla nds Jour n al of Geos cience s —– Geo logie en M ijnbo uw Fig. 2. MGUAN PA103 vertebral elements. A. Sequence of posterior cervical vertebrae and rib. B. Anterior cervical vertebra. C. Dorsal rib. D. Dorsal vertebra. prominent on the posterior half of the centrum. The centra are slightly amphicoelus with a thickened rim surrounding the outer region of the articular facet. Because of poor preservation the ventral foramina subcentralia cannot be seen. Singleheaded, transversally flattened ribs are attached on the centra ventrolaterally, tapering posteriorly and lacking anterior processes. The neural spines are blade-like, much narrower than the centra, but at the level of the neural arches they are only slightly narrower than the width of the centrum. Because of post-mortem crushing it is impossible to determine the shape of the neural canal. The neural spines are broad anteroposteriorly to the base and are completely fused to the centra, 4 although fractured at the base of the neural spine. The dorsal border of the neural spine is remarkably angled dorsally. The dorsal portion of the neural spines is further elaborated with anterior and posterior projections at their mid-height. Thus, the neural spines touch those adjacent, forming a tear-shaped void (Fig. 2). The posterior cervical neural spines nearly touch adjacent neural spines, a condition readily distinguished from that of Callawayasurus, which despite a small posterior projection near the neural spine apex has a clear separation between cervicals. No dorsoventral bending occurs among cervicals such as seen in the posterior section of the cervical vertebrae in Albertonectes (Kubo et al., 2012). A posterior projection on Net her lands Jour nal of Geos ciences —– Ge ologie en M ijnbouw the neural spine is also seen in Callawayasaurus (Welles, 1962), but the anterior projection is autapomorphic for this taxon (see Supplementary Material). Despite some breakage it is still possible to conclude that a posterior increase in height of the neural spines is not present. The zygapophyses are horizontal relative to the sagittal plane, unlike Futabasaurus, Albertonectes and Terminonatator. The postzygapophysis is f lat and steeply inclined dorsolaterally in posterior view, fitting with the same angle on the prezygapophysis of the following vertebra. All centra are longer than they are high. The dorsal centrum is acoelus, being wider compared to the length and height. In lateral view, the articulation for the neural arch is well marked. The articulation for the neural arch forms two broad ellipsoid surfaces in dorsal view. The ventral surface is perforated by two pairs of foramina subcentralia. The dorsal ribs have a small constriction around the head and taper ventrally. The single articular facet of the ribs is mediolaterally ellipsoidal. Pectoral girdle Pectoral girdle elements from a single individual (MGUAN PA103) were found mostly articulated except for the right scapula, which is displaced and overlaps the right coracoid (Fig. 3). The preglenoid portion of the pectoral girdle is subequal in size to the postglenoid portion of the pectoral girdle (Figs 3 and 4). The longitudinal pectoral bar is formed by the coracoid, scapula and clavicle, making a continuous slight prominence along the ventral surface, which is an unusual condition in elasmosaurids (e.g. Callawayasaurus, Wapuskanectes, Hidrotherosaurus, Aphrosaurus). The lateral scapulacoracoid contact (i.e. not the glenoid facet) has one distinct Fig. 3. MGUAN PA103 pectoral and limb elements. A. Pectoral girdle in ventral view. B. Forelimb elements as preserved. C. Left scapula in dorsal view. D. Left pelvic girdle in dorsal and ventral views. Bf, bone fragments; G, glenoid; H, humerus; Icl, interclavicle; Icv, intercoracoid vacuity; lc; left coracoid; Lcl, left clavicle; Pi, pisiform; Pp, postaxial process; R, radius; Ra, radiale; rc, right coracoid; Sdb, scapula dorsal blade; U, ulna; Icl, interclavicle; rs, right scapula; lcv, intercoracoid vacuity. 5 Netherla nds Jour n al of Geos cience s —– Geo logie en M ijnbo uw triangular facet for the articulation between the coracoid and scapula. The coracoid is a flat bone and, as in other plesiosaurs, is thickest around the glenoid. Both preglenoid projections are complete and undistorted. The preglenoid projection of the coracoid is short and narrow, and although it clearly surpasses the anterior margin of the scapular facet, it diverges slightly laterally, but to a lesser extent than the condition in Trinacromerum brownorum, which is distinctly angled (Thurmond, 1968). The shape and proportions of the preglenoid projection resemble that of an unnamed elasmosaurid from the Lowest Maastrichtian CMN9454 from Canada (Sato & Wu, 2006), but is shorter than in the Albian elasmosaurid Wapuskanectes (Druckenmiller & Russell, 2006) from Canada. The Aphrosaurus preglenoid projection is very short (Welles, 1943) and it is nearly non-existent in an aristonectine elasmosaurid from Angola (Araújo et al., in press) or Hydrotherosaurus (Welles, 1943). There is an asymmetrical ventral buttress of the coracoids with the right coracoid overlapping the left with a lip of bone, unlike the symmetrical ventral buttress in Wapuskanectes or Mauisaurus. This is not a result of post-mortem distortion because, despite a small horizontal crack, even without repositioning there is clearly a lip of bone that overlaps dorsally. The medial posterior process tapers considerably and is much shorter than the anterior process of the coracoid. The coracoid possesses well-defined posterior cornua, giving a cordiform appearance to the intercoracoid foramen, also present in Wapuskanectes and Styxosaurus. The posterior intercoracoid symphysis forms a 10-cm long contact between the posteromedial processes, unlike most elasmosaurids. There are no median coracoid perforations, as seen in Leptocleidia (e.g. Benson & Druckenmiller, 2014). The postero-lateral coracoid wings, as seen in late Cretaceous polycotylids and to some extent in some elasmosaurids, such as cf. Aristonectes (TMM43445-1), are gentle projections formed by the lateral and posterior borders. The lateral border is concave posterior to the glenoid and the posterior convex as in Plesiosaurus (Owen, 1883; Storrs, 1997) and Leptocleidus (Andrews, 1922), and many elasmosaurids (e.g. Hydrotherosaurus, Aphrosaurus, Albertonectes). Dolichorhynchops possesses a concave lateral border and straight posterior border. The extremities of the bone exhibit a rugose pattern punctuated by several nutrient foramina. Both scapulae are present in MGUAN PA103, although the left is slightly displaced and rotated, and the right significantly displaced and overlying the right coracoid. Although the scapula exhibits the typical triradiate shape (e.g. Andrews, 1910), the reduced dorsal blade of the scapula contrasts with its broad ventral area. This is an unusual feature for elasmosaurids (Figs 3 and 4, and a similar but more conservative condition in an unnamed elasmosaurid CM Zfr145; Hiller et al., 2005). The median contact between the scapulae extends along its entire anteroposterior length. The medial coracoscapular contact is reduced and only the tip of the posterior process of the scapula contacts the coracoid medially, enclosing a large coracoid 6 ‘foramen’ (for homology see Araújo & Correia, in press). The scapular shaft is thick, ellipsoid in cross-section and splays anteriorly into a flat and thin plate of bone. The anterior edge of the scapula is concave and forms an acute angle laterally. The dorsal blade of the scapula arises laterally from the scapular shaft. The dorsal blade angles posteriorly, is 5–7 cm long and tapers to a blunt apex. The glenoid face and the medial coracoscapular contact are subtriangular and rugose. The ventral area of the scapula nearly equals the area of the clavicle, a condition not yet observed in elasmosaurids and other plesiosaurians (e.g. Thalassomedon, Morenosaurus, Albertonectes, Callawayasaurus). The clavicle is a large, flat bone, subtriangular in shape and with a blunt anterior apex. The shape of the clavicle is unique among plesiosaurs (in contrast with, for example, Futabasaurus, Albertonectes and Thalassomedon dentonensis). It contacts its counterpart medially along its entire length. Ventrally, a small medial lip of bone projects posteriorly, partially enveloping the anterior border of the scapula. Anteriorly it contacts the interclavicle, which is poorly preserved. Forelimb The humerus of MGUAN PA103 possesses a postaxial protuberance that is not present in the femora of other known plesiosaur taxa. The preaxial and postaxial borders of the humerus are nearly straight (Fig. 3). The postaxial border bears a protuberance at mid-shaft. The proximal is damaged but spherical in shape. The distal end bears two distinct epipodial facets. The preaxial border of the ulna is concave. A supernumerary element articulates on the distal lateral facet of the ulna. The radius is wider than long, rectangular and articulates with a very wide radiale anteriorly. Pelvic girdle A complete pelvic girdle and hindlimb (MGUAN PA270) referred here to Cardiocorax mukulu n. gen. et sp. was originally figured by Mateus et al. (2012, their Figure 11). The pubis and ischium are similar in morphology, proportions and size compared to the holotype specimen (MGUAN PA103), and only differs in having a more rounded anterior border and a more deeply concave lateral border of the pubis. These differences can be easily accounted for by intraspecific variation. The right ilium is missing, and all other elements are fractured but complete (Fig. 3). The median symphysis between left and right portions extends from the anterior edge of the pubis to the anteroposterior midpoint of the ischium and forms a median pelvic bar. In Futabasaurus an incipient median pelvic bar forms a diamond-shaped fenestra at the articulation of both halves of the girdle (Sato et al., 2006), but in MGUAN PA103 the median pelvic bar is completely connected, forming a straight structure, as in Libonectes and Elasmosaurus. Net her lands Jour nal of Geos ciences —– Ge ologie en M ijnbouw The pubis forms a sinuosity along the anterolateral border and the medial edge of the pubis is straight. The anterior surface of the pubis is not notched; rather it is gently angled in the median portion of the anterior surface. A flared lateral extension of the pubis as seen in Mauisaurus haasti (KHM N99-1079; Hiller et al., 2005) and Terminonatator (Sato, 2003), and a small well-defined notch on the lateral edge of the pubis (Bardet et al., 2008) is present in MGUAN PA103. The posterior surface of the pubis has well-defined flat facets for the femur, whereas the facet for the ischium is gently concave and an oval shape with the more acute curve on the lateral side. Although an elliptical cross-section is discernible, it is not possible to determine the relative proportions of the distal and proximal facets of the ilium because the distal facet is not entirely preserved. The ilium is not twisted but curved (Storrs, 1997), but because of the symmetry of the element and the absence of facets it is impossible to discern the curvature direction. The ilium has a blunt and f lattened proximal end, but again it is impossible to discern the flattening direction. Hindlimb In MGUAN PA270 (Mateus et al., 2012; their Figure 11), a nearly complete, semi-articulated hindlimb is present and articulated with the pelvis. The femur is proximally formed by a hemispherical capitulum separated by an isthmus sloping into a flat D-shaped tuberculum. The shaft of the femur is cylindrical with a ventral roughening at mid-shaft for muscle attachment. The shaft flares distally and forms three distinct facets. No supernumeraries were found in articulation with the posterior paddle, but there seems to be an articulation facet on the postaxial side of the femur. The flared distal portion of the femur has deep longitudinal striations for muscle attachment. The tibia is broader than long. The medial margins of the tibia and fibula are concave, whereas the distal and proximal margins are straight. The calcaneum and centrale are preserved and in situ but the astragalus is missing. Estimates are made difficult by the taphonomic displacement of some of the digits, but the minimum phalangeal formula is I-7, II-8, III-8, IV-8, V-7. Results Character-based parsimony analysis Phylogenetic analysis produced a single parsimonious tree of 1136.78 steps (Fig. 4). The analysis recovered Cardiocorax mukulu as the sister taxon to Styxosaurus snowii, and that clade as the sister of a clade composed of (Hydrotherosaurus alexandrae (Libonectes morgani + Elasmosaurus platyurus)). These taxa collectively form the most derived elasmosaurid clade. Elasmosauridae is strongly supported by Bremer indices and GC values, and are united by short and distally wide femur (character 175), and the premaxilla completely splits the frontals and contacts the parietals (character 10 state 2). Fig. 4. Portion of recovered topology showing relationships of Cardiocorax mukulu. See text and Supplementary Material Figures 1 and 2 for detailed results. Unequivocal characters supporting the position of C. mukulu include the ventrally notched anterior articular face of the cervical centra (Ketchum & Benson, 2010, 122:1) and the anteromedial margin of the coracoid contacts the scapula (Ketchum & Benson, 2010, 150: 1), despite convergency with non-elasmosaurid plesiosaurs such as Plesiosaurus or Thalassiodracon. The formation of the coracoid embayment is also another elasmosaurid apomorphy, present in Cardiocorax and noted in a previous phylogenetic analysis (e.g. Ketchum & Benson, 2010). Morphometrics-based parsimony analysis Our phylogenetics morphometrics analysis (see Catalano et al., 2010) of the coracoid shape recovered a topology consistent with the most generally recognised Eosauropterygia clades, and thus provides a possible evolutionary model for the coracoid (Fig. 5a). Within Plesiosauria, two clearly distinctive morphotypes emerged: the Elasmosauridae morphotype with the formation of an intercoracoid vacuity and the Polycotylidaemorphotype with a long preglenoid projection and posterior cornu. Although resistant fit theta-rho analysis (RFTRA) as a re-aligning method provided a better tree score at the lowest level of search thoroughness (4.8), at higher levels the heuristic minimisation of differences method performed considerably better, with a tree score of 4.2 (Fig. 5d). At the levels of thoroughness 3 and 4, the tree score was similar to the re-aligning method by heuristic minimisation of differences. Yet, for individual landmark scores, the heuristic minimisation of differences method was less consistent relative to RFTRA (contrast Fig. 5b and c), which showed close individual landmark scores at all levels of thoroughness. The best tree score was achieved with heuristic minimisation of differences for the levels of thoroughness 3 (Fig. 5d) and 4. However, the tree that best mirrors generally accepted relationships in Eosauropterygia was calculated using heuristic minimisation of differences with the level of thoroughness 3. Additional trees are included in the Supplementary Material. Discussion In Fig. 6 we present a model of pectoral girdle evolution in Eosauropterygia. In basal forms we see major reduction of the 7 Netherla nds Jour n al of Geos cience s —– Geo logie en M ijnbo uw Fig. 5. Results of phylogenetic morphometric analysis. A. Preferred tree. Landmark scores for each landmark using (B) heuristic and (C) RFTRA search methods. D. Comparison of the overall tree score between the heuristic and RFTRA method. See Supplementary Material Figures 4–13 for all recovered trees. clavicle, reduction of the coracoid buttresses, reduction of the dorsal blade and general ventralisation of the scapula, horizontal orientation of the coracoid, and formation of the clavicular-scapular arch. At the level of Pistosauria, we see high morphological disparity of the coracoid. After the Late Triassic morphological gap, we see formation of a large coracoid foramen, medial migration of the medial coracoid-scapula contact, expansion of the postglenoid projection, and a weakening of the scapular-clavicular articulation. Within pliosaurids, we see retention of a relatively conservative pectoral girdle with broad medial contact of the coracoids. In polycotylids there is a novel development of the posterior coracoid wings, but the scapula remains moderately expanded ventrally. Within elasmosaurids, we see the formation of the intercoracoid vacuity and in late elasmosaurs, extreme ventral development of the scapula and clavicle, formation of an extensive longitudinal pectoral bar and nearly complete elimination of the dorsal process of the scapula. These evolutionary novelties are broadly correlated with optimisation of aquatic locomotion from terrestrial basal neodiapsid ancestors. However, notwithstanding the general model 8 developed by Carpenter et al. (2010), significant differences in girdle and limb morphology in Plesiosauria suggest that different clades may have employed variations of rowing and underwater flying. The area of muscle attachments on the girdle elements reflects both the dominant direction and magnitude of forces that are applied to the limbs. The glenoid architecture should reflect motion to the extent the glenoid must resist forces applied to the limb and thus should also reflect the dominant motion vectors (i.e. protraction and retraction vectors). This is contrary to the reasoning of Carpenter et al. (2010), who suggested limb motion was greatest in the vectors defined by least restriction in the glenoid (i.e. adduction and abduction). Thus, an understanding of the myology, proportions of the limb and the glenoid architecture across the broader clade is critical to infer swimming styles and variation in stroke geometry. The osteological correlates of muscles attachment sites define area and at times direction (Araújo & Correia, in press) and thus reflect to some degree the magnitude and vector of muscle forces. When examined within a system like the forelimb and pectoral girdle, the interaction of these forces and vectors Net her lands Jour nal of Geos ciences —– Ge ologie en M ijnbouw Fig. 6. Patterns of pectoral girdle evolution in Eosauropterygia. See text and Supplementary Material for discussion. yields clues to the kinematics of that system. In basal neodiapsids, the levator scapulae, the serratus and the scapulodeltoideus originate on the dorsal blade of the scapula (Holmes, 1977). The areas of attachment of these muscles are reduced in Eosauropterygia because the lifestyle in a buoyant aquatic medium does not require, to the same extent, limb support musculature (Lin & Rieppel, 1998). Other secondarily-adapted paraxial swimmers, such as penguins (Schreiweis, 1982) and pinnipeds (Murie, 1871), also show selective limb muscle reduction and expansion. However, Cardiocorax demonstrates an extreme case of reduction of the levator scapulae, scapulodeltoideus and serratus in which the ventral area of attachment in the scapula is 14 times greater than the area of attachment on the dorsal blade. The ratio of the coracoid area versus the total length of the individuals and the ratio of coracoid area versus the ventral area of the scapula is clearly contrasted in Cretaceous plesiosaurs, with policotylids and elasmosaurids being separated (Fig. 7a and b). This is indicative of the different swimming styles between these two clades, namely the use of the coracobrachialis and clavodeltoideus muscle (Araújo & Correia, in press). The average ratio between the dorsal blade area and the ventral surface in the sampled Eosauropterygia is 3.3 and in Elasmosauridae is 3.6 (Fig. 7c). The variation of almost an order of magnitude within the same family reflects the particular locomotory patterns of Cardiocorax. Typically for diapsids the levator scapulae and the scapulohumeralis insert directly on the dorsal portion of the scapula (Russell & Bauer, 2008). Basal cryptoclidids (sensu Ketchum & Benson, 2010) also have high ratios of the dorsal blade area and the ventral surface of the scapula (average 7.6), and Cryptocleidus eurymerus has a ratio of 10 (Fig. 7c). By this measure, the scapular muscles in basal cryptoclidids and Cardiocorax are comparable. Cardiocorax has a highly proximodistally reduced and distally expanded humerus (Fig. 3), rivaled only by Cryptocleidus (ratio is 0.3) among Eosauropterygia (Fig. 7d). However, the shortening of the humerus is a common trend among marine mammals (Fish, 1996) and marine turtles (Renous et al., 2008). The members of the Elasmosauridae possess the most derived condition of this aquatic adaptation (Fig. 7d) in having the lowest humeral ratio values (average is 1.4) among Eosauropterygia (average is 2.0). Along those lines, the radius ratio also tends to diminish along the evolution of the clade (Fig. 7e). The extreme distal expansion of the Cardiocorax with a doubly faceted distal border provides a broad articulation for interlocking zeugopodials (Fig. 3), a feature shared with Cryptocleidus. Similarly, Cardiocorax has a shortened radius (0.77 ratio) comparable only to other Late Cretaceous polycotylids such as Dolichorhynchops and Edgarosaurus (Fig. 7d and e). Cardiocorax’ shortened propodials and zeugopodials would have 9 Netherla nds Jour n al of Geos cience s —– Geo logie en M ijnbo uw Fig. 7. Morphometric pectoral girdle variables against time. A. Ratio of the coracoid area versus the total length of the individual. Note the constrasting values between polycotylids and elasmosaurids, convergent with the ratios on pachypleurosaurids. B. Ratio of the coracoid area versus the ventral area of the scapula. Note the similar ratios for elasmosaurids and cryptocleidids. C. Ratio of the ventral area of the scapula versus the dorsal blade of the scapula area. Note the outlier position of Cardiocorax, only comparable with that of cryptocleidids. D. Humerus ratio, length versus distal width. Note the tendency in Eosauropterygia for increasing massiveness of the propodials, a trend convergent with various secondarily-adapted organisms; E. Radius ratio, length versus distal width. As for the propodials the epipodials also tend to increase in massiveness to increase the mechanical advantage of locomotor muscles and paddle stabilisers. See Supplementary Material Tables 1–3. increased mechanical advantage of the extrinsic musculature inserting on the girdle for increased leverage (Araújo & Correia, in press). To cope with the force imparted by the muscles, the coracoids meet extensively posteriorly and there is a broad median contact between the scapulae and clavicles. 10 Additionally, the contact between the clavicle and scapula is broad. The pectoral girdle is strengthened by the left–right asymmetric ventral buttress of the coracoid. Plesiosaurs have a thickened glenoidal portion of the coracoid, but a marked ventral buttress is most evident in Elasmosauridae and facilitates Net her lands Jour nal of Geos ciences —– Ge ologie en M ijnbouw bending resistance between the two sides of the pectoral girdle. Cardiocorax pectoral and pelvic girdles present a structural extreme for quadrupedal subaqueous locomotion. The reduction of the attachment area of the dorsal blade of the scapula versus the expansion of the attachment area of the ventral area in Cardiocorax indicates atrophy of muscle groups that were primitively involved in terrestrial locomotion and, on the other hand, expansion of other muscle groups involved in quadrupedal subaquatic locomotion. Thus, the peculiar Cardiocorax pectoral girdle architecture has functional implications. The subequal coracoid ventral area and the clavicle and scapula ventral area, plus the reduced dorsal blade of the scapula, seem to be more compatible with a protraction-retraction limb cycle with change of the flipper pitch than with a figure eight limb cycle previously proposed for plesiosaurs (Robinson, 1975). Benson, R.B.J. & Druckenmiller, P.S., 2014. Faunal turnover of marine tetrapods during the Jurassic–Cretaceous transition. Biological Reviews 89: 1-23. doi: 10.1111/brv.12038. Benson, R.B.J., Evans, M. & Druckenmiller, P.S., 2012. High Diversity, Low Disparity and Small Body Size in Plesiosaurs (Reptilia, Sauropterygia) from the Triassic–Jurassic Boundary. PLoS ONE 7(3): e31838. doi:10.1371/journal. pone.0031838. Bremer, K., 1994. Branch support and tree stability. Cladistics 10: 295-304. Carpenter, K., Sanders, F., Reed, B., Reed, J. & Larson, P., 2010. Plesiosaur swimming as interpreted from skeletal analysis and experimental results. Transactions of the Kansas Academy of Science 113: 1-34. Catalano, S.A., Goloboff, P. & Giannini, N., 2010. Phylogenetic morphometrics (I): the use of landmark data in a phylogenetic framework. Cladistics 26: 539-549. Cooper, M.R., 2003. Upper Cretaceous (Turonian-Coniacian) ammonites from S~ao Nicolau, Angola. Annals of the South African Museum 110: 89-146. Supplementary Material Supplementary material for this paper available on: http://dx. doi.org/S0016774614000444 Acknowledgments Cope, E.D., 1869. Synopsis of the extinct Batrachia and Reptilia of North America. Transactions of the North American Philosophical Society 14: 1-252. de Blainville, H.D., 1835. Description de quelques espèces de reptiles de la Californie, précédée de l’analyse d’un système général d’Erpétologie et d’Amphibiologie. Nouvelles Annales Musée (national) d’Histoire Naturelle Paris 4: 233-296. Druckenmiller, P.S. & Russell, A.P., 2006. A new elasmosaurid plesiosaur (Reptilia: Sauropterygia) from the Lower Cretaceous Clearwater Formation, The first author dedicates this article to the memory of his brother. This publication results from ProjectoPaleoAngola, an international cooperative research effort among the contributing authors and their institutions, funded by the National Geographic Society, the Petroleum Research Fund of the American Chemical Society, Sonangol EP, Esso Angola, Fundaç~ao Vida of Angola, LS Films, Maersk, Damco, Safmarine, ISEM at SMU, the Royal Dutch Embassy in Luanda, TAP Airlines, Royal Dutch Airlines and the Saurus Institute. We thank Margarida Ventura and André Buta-Neto for providing our team with help in the field. Tako and Henriette Koning provided valuable support and friendship in Angola. Northeastern Alberta, Canada. Paludicola 5: 184-199. Evans, M., 2012. A new genus of plesiosaur (Reptilia: Sauropterygia) from the Pliensbachian (Early Jurassic) of England, and a phylogeny of the Plesiosauria. PhD thesis, University of Leicester: 397 pp. Fish, F., 1996. Transitions from drag-based to lift-based propulsion in mammalian swimming. American Zoology 36: 628-641. Goloboff, P.A. & Farris, J.S., 2001. Methods for Quick Consensus estimation. Cladistics 17: S26-S34. Goloboff, P.A. & Catalano, S.A., 2011. Phylogenetic morphometrics (II): algorithms for landmark optimization. Cladistics 2: 42-51. Goloboff, P.A., Farris, J.S., Källersjö, M., Oxelman, B., Ramı́rez, M.J. & Szumika, C.A., 2003. Improvements to resampling measures of group support. Cladistics 19: 324-332. References Goloboff, P.A., Mattoni, C.I. & Quinteros, A.S., 2006. Continuous characters analyzed as such. Cladistics 22: 589-601. Andrews, C.W., 1910. A Catalogue of the Marine Reptiles of the Oxford Clay, Part I. British Museum (Natural History) (London): 205 pp. Goloboff, P.A., Farris, J.S. & Nixon, K.C., 2008. TNT, a free program for phylogenetic analysis. Cladistics 24: 774-786. Andrews, C.W., 1922. Description of a new plesiosaur from the Weald Clay of Hiller, N., Mannering, A., Jones, C.M. & Cruickshank, A.R.I., 2005. The nature of Berwick (Sussex). Quarterly Journal of the Geological Society of London 78: Mauisaurus haasti Hector, 1874 (Reptilia: Plesiosauria). Journal of Vertebrate 285-295. Araújo, R. & Correia, F., in press. Soft-tissue anatomy of the plesiosaur pectoral girdle inferred from basal Eosauropterygia taxa and the extant phylogenetic bracket. Palaeontologia Electronica. Paleontology 25: 588-601. Holmes, R., 1977. The osteology and musculature of the pectoral limb of small captorhinids. Journal of Morphology 152: 101-140. Jacobs, L.L., Mateus, O., Polcyn, M.J., Schulp, A.S., Antunes, M.T., Morais, M.L. & Araújo, R., Lindgren, J., Polcyn, M.J., Jacobs, L.L., Schulp, A.S. & Mateus, O., Tavares, T.S., 2006. The occurrence and geological setting of Cretaceous accepted. Elasmosaurid plesiosaur material from Angola and the effects of dinosaurs, mosasaurs, plesiosaurs, and turtles from Angola. Journal of the paedomorphism in plesiosaurs. Netherlands Journal of Geosciences. Paleontological Society of Korea 22: 91-110. ~uela, L., Bardet, N., Fernández, M., Garcı́a-Ramos, J.C., Suberbiola, X.P., Pin Ketchum, H.F. & Benson, R.B.J., 2010. Global interrelationships of Plesiosauria ~aca, J.I. & Vincent, P., 2008. A juvenile plesiosaur from the PliensRuiz-Omen (Reptilia, Sauropterygia) and the pivotal role of taxon sampling in deter- bachian (Lower Jurassic) of Asturias, Spain. Journal of Vertebrate Paleontol- mining the outcome of phylogenetic analyses. Biological Reviews 85: ogy 28: 258-263. 361-392. 11 Netherla nds Jour n al of Geos cience s —– Geo logie en M ijnbo uw Kubo, T., Mitchell, M.T. & Henderson, D.M., 2012. Albertonectes vanderveldei, Storrs, G.W., 1986. Anatomy and relationships of Corosaurus alcovensis (Reptilia: a new elasmosaur (Reptilia, Sauropterygia) from the Upper Cretaceous of Nothosauria) and the Triassic Alcova Limestone of Wyoming. PhD dissertation, Alberta. Journal of Vertebrate Paleontology 32: 557-572. Lin, K. & Rieppel, O., 1998. Functional Morphology and Ontogeny of Keichousaurus hui (Reptilia, Sauropterygia). Fieldiana (Geology), New Series 39: 1-35. Lingham-Soliar, T., 2000. Plesiosaur locomotion: is the four-wing problem real or merely an a theoretical exercise? Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 217: 45-87. Yale University: 367pp. Storrs, G.W., 1997. Morphological and taxonomic clarification of the genus Plesiosaurus. In: Callaway, J.M., Nicholls, E. (eds): Ancient Marine Reptiles. Academic Press(San Diego): 145-190. Strganac, C., Jacobs, L.L., Polcyn, M.J., Mateus, O., Myers, T.S., Salminen, J., May, S.R., Araújo, R., Ferguson, K.M., Gonçalves, A.O., Morais, M.-L., Mateus, O., Polcyn, M.J., Jacobs, L.L., Araújo, R., Schulp, A.S., Marinheiro, J., Schulp, A.S. & da Silva Tavares, T., in press.Geological Setting and Paleoecol- Pereira, B. & Vineyard, D., 2012. Cretaceous amniotes from Angola: dino- ogy of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, saurs, pterosaurs, mosasaurs, plesiosaurs, and turtles. Sala de los Infantes 71-105. Murie, J., 1871. Researches upon the anatomy of the Pinnipedia – Part II. Descriptive anatomy of the sea-lion (Otariajubata). Zoological Society of London Transactions 7: 527-596. O’Keefe, F.R., 2001. A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia). Acta Zoologica Fennica 213: 1-63. O’Keefe, F.R. & Carrano, M.T., 2005, Correlated trends in the evolution of the plesiosaur locomotor system. Paleobiology 31: 656-675. Owen, R., 1883. On generic characters in the order Sauropterygia. Quarterly Journal of the Geological Society 39: 133-138. Renous, S., de Brain, F.L., Depecker, M., Davenport, J. & Bels, V., 2008. Evolution of locomotion in aquatic turtles. In: Wyneken, J., Godfrey, M.H., Bel, V. (eds): Biology of Turtles. Taylor & Francis Group (Boca Raton): 97-138. Rieppel, O., 1994. Osteology of Simosaurus gaillardoti and the Relationships of Stem-Group Sauropterygia. Fieldiana Geology, New Series 28: 1-85. Angola. Netherlands Journal of Geosciences. Sues, H.-D., 1987. Postcranial skeleton of Pistosaurus and interrelationships of the Sauropterygia (Diapsida). Zoological Journal of the Linnaean Society 90: 109-131. Thewissen, J.G.M. & Taylor, M.A., 2007. Aquatic adaptations in amniotes. In: Hall, B.K. (ed.): Fins into Limbs, Evolution, Development, and Transformation. University of Chicago Press (Chicago): 310-322. Thurmond, J.T., 1968. A new polycotylid plesiosaur from the Lake Waco Formation (Cenomanian) of Texas. Journal of Paleontology 42: 1289-1296. Vincent, P., Bardet, N., Suberbiola, X.P., Bouya, B., Amaghzaz, M. & Meslouh, S., 2011. Zarafasaura oceanis, a new elasmosaurid (Reptilia: Sauropterygia) from the Maastrichtian Phosphates of Morocco and the palaeobiogeography of latest Cretaceous plesiosaurs. Gondwana Research 19: 1062-1073. Watson, D.S., 1924. The elasmosaur shoulder girdle and fore-limb. Proceedings of the Zoological Society of London 2: 885-917. Welles, S.P., 1943. Elasmosaurid plesiosaurs, with description of new material from California and Colorado. University of California Memoirs 13: 125–254. Rieppel, O., 1997. Revision of the sauropterygian reptile genus Cymatosaurus v. Welles, S.P., 1962. A new species of elasmosaur from the Aptian of Colombia and Fritsch, 1894, and the relationships of Germanosaurus Nopcsa, from the Middle a review of the Cretaceous plesiosaurs. University of California Publications Triassic of Europe. Fieldiana (Geology), New Series 36: 1-38. Geological Sciences 44: 1–96. Rieppel, O., 2000. Sauropterygia I: Placodontia, Pachypleurosauria, Nothosauria, Piatosauroidea. In: Wellnhofer, P. (ed.): Encyclopedia of Palaeoherpetology, Appendix Vol. 12A. Pfeil (Munich): 134 pp. Robinson, J.A., 1975. The locomotion of plesiosaurs. Neues Jahrbuch für Geologie Codings for Ketchum & Benson (2010) und Paläontologie, Abhandlungen 149: 286-332. Russell, A.P. & Bauer, A., 2008. The appendicular locomotor apparatus of Sphenodon and normal-limbed squamates. In: Gans, C., Gaunt, A.S., Adler, K. (eds): Biology of the Reptilia, vol. 21 (The skull and appendicular locomotor apparatus of Lapidosauria). Society for the study of amphibians and reptiles, Ithaca, New York. Contributions to Herpetology 24: 1–465. Cardiocorax mukulu ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??????????????????????????????????????????? ??????????????????????????????????????????? ???111121202?111?0??12??1010110111100? 1.3 ? 1 0 1 1 1 ? 0.77 1 1 ? ? 1 0 0 1 1 1 1.27 0 ? ? ? ? Sato, T., 2003. Terminonatator ponteixensis, a new elasmosaur (Reptilia: Sauropterygia) from the Upper Cretaceous of Saskatchewan. Journal of Vertebrate Codings for Vincent et al. (2011) Paleontology 23: 89-103. Sato, T. & Wu, X.-C., 2006. Review of plesiosaurians (Reptilia: Sauropterygia) from the Upper Cretaceous Horseshoe Canyon Formation in Alberta, Canada. Paludicola 5: 150-169. Sato, T., Hasegawa, Y. & Manabe, M., 2006. A new elasmosaurid plesiosaur from the Upper Cretaceous of Fukushima, Japan. Palaeontology 49: 467-484. Schmidt, S., 1984. Paleoecology of nothosaurs. In: Reif, W.-E. & Wesphal, F. (eds): Third Symposium Mesozoic Terrestrial Ecosystems, Short Papers. Attempto Verlag (Tübingen): 215-218. Schreiweis, D.O., 1982. A comparative study of the appendicular musculature of penguins (Aves: Sphenisciformes). Smithson Contributions to Zoology 341: 1-45. 12 Cardiocorax mukulu ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ???????????????0?11101111?1111100002??
Supplementary Table 1 Higher order taxonomy Specimens Ventral Area in cm2 Dorsal Blade Scapula Area in cm2 Age (Ma) Max Age (Ma) Min Age (Ma) Avg Age (Ma) Ratio V/DB Refs 1 "Plesiosauridae" Hydrorion pectoral girdle GPIT-RE-3185 55.928 12.256 183-181 183 181 182 4.563315927 Grossmann 2007; Ogg et al. 2004 2 Pachypleurosaur Keichousaurus SMNS82044 0.367 0.066 228-220 228 220 224 5.560606061 Rieppel 2000; Ogg et al 2004; Estimated based on SMNS 59705 3 Pachypleurosaur Keichousaurus SMNS 81780 0.204 0.066 228-220 228 220 224 3.090909091 Rieppel 2000; Ogg et al 2004; Estimated based on SMNS 59705 4 Elasmosauridae Leurospondylus ultimus AMNH5261 62.21 26.94 74-73 74 73 73.5 2.309205642 Brown 1913; Cobban et al 2006 5 Nothosaur Nothosauridae SMNS 84069 75.491 55.465 237-235 237 235 236 1.361056522 Label (Oberer Muschelkalk); Ogg et al. 2004 6 Nothosaur Nothosaurus miriabilis SMNS 13232 30.624 20.978 237-235 237 235 236 1.459815044 Label (Oberer Muschelkalk); Ogg et al. 2004 7 Elasmosauridae Styxosaurus YPM1644 272.398 88.564 75 75 75 75 3.075719254 Cobban et al 2006 8 Elasmosauridae Styxosaurus YPM1645 708.42 147.419 75 75 75 75 4.805486403 Cobban et al 2006 9 Elasmosauridae aff Tuarangisaurus CD428 98.278 31.19 83.5-65.5 83.5 65.5 74.5 3.150945816 Wiffen and Moisley 1986; Cobban et al 2006 10 Elasmosauridae aff Tuarangisaurus AIM LH1521 67.145 23.61 83.5-65.5 83.5 65.5 74.5 2.843922067 Wiffen and Moisley 1986; Cobban et al 2006 11 Nothosaur Nothosauridae SMNS84517 21.859 13.18 237-235 237 235 236 1.658497724 Label (Oberer Muschelkalk); Ogg et al. 2004 12 Pistosaur Pistosaurus SMNS 81918 19.819 4.973 237-235 237 235 236 3.985320732 Label (Oberer Muschelkalk); Ogg et al. 2004 13 Nothosaur Simosaurus gaillardoti SMNS 820221 26.489 9.196 237-235 237 235 236 2.880491518 Label (Oberer Muschelkalk); Ogg et al. 2004 14 Nothosaur Simosaurus SMNS7862 36.891 9.906 237-235 237 235 236 3.724106602 Label (Oberer Muschelkalk); Ogg et al. 2004 15 Nothosaur Simosaurus SMNS 18373 26.842 13.498 237-235 237 235 236 1.988590902 Label (Oberer Muschelkalk); Ogg et al. 2004 16 Nothosaur Nothosaur GPIT-RE-1533 7.079 6.807 237-235 237 235 236 1.039958866 Label (Oberer Muschelkalk); Ogg et al. 2004 17 Nothosaur Nothosaurus GPIT-RE-01863 36.008 23.529 237-235 237 235 236 1.530366781 Label (Oberer Muschelkalk); Ogg et al. 2004 18 Nothosaur Nothosaurus sp GPIT-RE-01532 5.48 4.961 237-235 237 235 236 1.104616005 Label (Oberer Muschelkalk); Ogg et al. 2004 19 Nothosaur Nothosaurus sp GPIT-RE-01315 7.497 12.355 237-235 237 235 236 0.606798867 Label (Hauptmuschelkalk); Ogg et al. 2003 20 Nothosaur Nothosaurus sp GPIT-RE 11.229 5.147 233-232 233 232 232.5 2.181659219 Label (Lettenkeuper); Ogg et al. 2004 21 Pachypleurosaur Neusticosaurus edwardsii T3758 0.611 0.221 228-230 228 230 229 2.764705882 Sander 1989; Ogg et al 2004 22 Pachypleurosaur Neusticosaurus edwardsii T3775 0.782 0.253 228-230 228 230 229 3.090909091 Sander 1989; Ogg et al 2004 23 Pachypleurosaur Neusticosaurus peyeri T3403 0.138 0.094 228-230 234 231 232.5 1.468085106 Sander 1989; Ogg et al 2004 24 Pachypleurosaur Neusticosaurus peyeri T3445 0.973 0.339 228-230 234 230 232 2.87020649 Sander 1989; Ogg et al 2004 25 Pachypleurosaur Serpianosaurus T3675 0.558 0.262 237 237 237 237 2.129770992 Rieppel 2000; Ogg et al 2004 26 Polycotylidae Trinacromerum (Ceraunosaurus) brownorum 401.537 167.632 94-93 94 93 93.5 2.395348144 Thurmond 1968; Cobban et al 2006 27 Polycotylidae Dolichorhynchops tropecensis MNA V10046 122.926 61.32 93.5-92 93.5 92 92.75 2.004664057 McKean 2011 28 Polycotylidae Eopolycotylus rankini MNA V9445 250.881 146.492 93.5-92 93.5 92 92.75 1.712591814 Albright et al 2007 29 "Plesiosauridae" Hauffiosaurus zanoni 54.693 55.945 183-180 183 180 181.5 0.977620878 Vincent 2010; Palfy et al 30 Elasmosauridae Hydrotherosaurus UCMP33912 437.884 124.813 70-68 70 68 69 3.508320447 Welles 1943; Martin 1964; Cobban et al 1967 31 "Plesiosauridae" Occitanosaurus tournemirensis MMM J. T. 86-100 39.551 17.449 178-180 178 180 179 2.266662846 Bardet et al 2003; Palfy et al 32 "Plesiosauridae" Plesiosaurus dolichodeirus BMNH22656 84.794 31.087 191-189.5 191 189.5 190.25 2.727635346 Storrs 1997; Ogg et al. 2004 33 Rhomaleosauridae Rhomaleosaurus thortoni BMNH R4853 221.811 139.987 183-178 183 178 180.5 1.584511419 Smith 2007; Palfy et al 34 Elasmosauridae Thalassomedon dentonensis TMM4225-1 451.519 107.651 93 93 93 93 4.194285237 Storrs 1981; Cobban et al 2006 35 Polycotylidae Dolichorhynchops (Trinacromerum) bonneri P80.06.14 226.712 106.37 80 80 80 80 2.131352825 Nicholls 1988; Cobban et al 2006 36 Polycotylidae Trinacromerum bentonianum FHSM VP71 202.631 127.742 93.5 93.5 93.5 93.5 1.586251977 Ketchum and Benson 2009 37 Elasmosauridae Cardiocorax 707.745 52.248 69 69 69 69 13.54587735 Our work 38 "Plesiosauridae" Westphaliasaurus simonsensii (P58091) 87.108 24.092 188 188 188 188 3.615640046 Schwermann and Sander 2011 39 Basal cryptoclidids Cryptocleidus eurymerus R2616 188.482 18.699 164.7-161.2 164.7 161.2 162.95 10.07979036 Ketchum and Benson 2009 40 Basal cryptoclidids Muraenosaurus leedsii R3704 167.651 18.688 164.7-161.2 164.7 161.2 162.95 8.971050942 Ketchum and Benson 2009 41 Basal cryptoclidids Muraenosaurus beloclis 81.097 16.098 164.7-161.2 164.7 161.2 162.95 5.037706547 Ketchum and Benson 2009 42 Basal cryptoclidids Tricleidus seeleyi 102.014 16.581 164.7-161.2 164.7 161.2 162.95 6.152463663 Ketchum and Benson 2009 43 Elasmosauridae Callawayasaurus 527.286 127.335 125-121 125 121 123 4.140935328 Welles 1962; Ogg et al 2004
Supplementary Table 2 Humerus Ratios Basal Plesiosauria Archaeonectrus rostratus 2.270 189.7 Basal Plesiosauria Attenborosaurus conybeari 2.200 189.7 Pistosauria Augustasaurus hagdorni 3.400 238.5 Pliosauria BEDFM1999/2001 2.450 165.5 Leptocleididae Brancasaurus brancai 1.960 142.5 Elasmosauridae Callawayasaurus colombiensis 1.410 120 Basal Cryptocleididae Cryptoclidus eurymerus 1.300 162.5 Nothosauria Cymatosaurus 3.200 244 Polycotylidae Dolichorhynchops osborni 1.900 82.5 Polycotylidae Eopolycotylus rankini 2.000 93 Basal Plesiosauria Eurycleidus arcuatus 1.950 199 Basal Plesiosauroidea Hauffiosaurus zanoni 2.630 184 Plesiosauridae Hydrorion brachypterygius 3.000 183 Elasmosauridae Hydrotherasaurus alexandrae 1.420 67.5 Pliosauria Kronosaurus queenslandicus 2.000 111 Plesiosauridae Microcleidus homalospondylus 1.820 183 Basal Plesiosauroidea MMUMLL8004 2.480 183 Basal Cryptocleididae Muraenosaurus leedsii 1.800 165.5 Leptocleididae Nichollssaura borealis 1.780 111 Plesiosauridae Occitanosaurus tournemirensis 2.200 179 Basal Plesiosauria OUMNHJ.02247 1.840 193 Polycotylidae Palmulasaurus quadratus 1.850 93 Plesiosauridae Plesiosaurus dolichodeirus 2.100 193 Basal Plesiosauria ‘Plesiosaurus’ macrocephalus 1.920 194 Pliosauria ‘Pliosaurus’ andrewsi 1.850 162.5 Polycotylidae Polycotylus latipinnis 1.890 77 Polycotylidae QMF18041 2.100 100 Pliosauria Rhomaleosaurus megacephalus 1.730 199 Pliosauria Rhomaleosaurus victor 2.100 183 Pliosauria Rhomaleosaurus zetlandicus 2.040 183 Plesiosauridae Seeleyosaurus guilelmiimperatoris 2.000 183 Pliosauria Simolestes vorax 1.910 164 Nothosauria Simosaurus gaillardoti 4.250 232 Elasmosauridae Styxosaurus snowii 1.450 75 Elasmosauridae Terminonatator ponteixensis 1.570 70 Basal Plesiosauroidea Thalassiodracon hawkinsi 2.220 199 Elasmosauridae Thalassomedon haningtoni 1.480 93 Basal Cryptocleididae Tricleidus seeleyi 1.750 163 Leptocleididae Umoonasaurus demoscyllus 2.170 119 Elasmosauridae Cardiocorax 1.3 70
Supplementary Table 1 Higher order taxonomy Specimens Ventral Area in cm2 Dorsal Blade Scapula Area in cm2 Age (Ma) Max Age (Ma) Min Age (Ma) Avg Age (Ma) Ratio V/DB Refs 1 "Plesiosauridae" Hydrorion pectoral girdle GPIT-RE-3185 55.928 12.256 183-181 183 181 182 4.563315927 Grossmann 2007; Ogg et al. 2004 2 Pachypleurosaur Keichousaurus SMNS82044 0.367 0.066 228-220 228 220 224 5.560606061 Rieppel 2000; Ogg et al 2004; Estimated based on SMNS 59705 3 Pachypleurosaur Keichousaurus SMNS 81780 0.204 0.066 228-220 228 220 224 3.090909091 Rieppel 2000; Ogg et al 2004; Estimated based on SMNS 59705 4 Elasmosauridae Leurospondylus ultimus AMNH5261 62.21 26.94 74-73 74 73 73.5 2.309205642 Brown 1913; Cobban et al 2006 5 Nothosaur Nothosauridae SMNS 84069 75.491 55.465 237-235 237 235 236 1.361056522 Label (Oberer Muschelkalk); Ogg et al. 2004 6 Nothosaur Nothosaurus miriabilis SMNS 13232 30.624 20.978 237-235 237 235 236 1.459815044 Label (Oberer Muschelkalk); Ogg et al. 2004 7 Elasmosauridae Styxosaurus YPM1644 272.398 88.564 75 75 75 75 3.075719254 Cobban et al 2006 8 Elasmosauridae Styxosaurus YPM1645 708.42 147.419 75 75 75 75 4.805486403 Cobban et al 2006 9 Elasmosauridae aff Tuarangisaurus CD428 98.278 31.19 83.5-65.5 83.5 65.5 74.5 3.150945816 Wiffen and Moisley 1986; Cobban et al 2006 10 Elasmosauridae aff Tuarangisaurus AIM LH1521 67.145 23.61 83.5-65.5 83.5 65.5 74.5 2.843922067 Wiffen and Moisley 1986; Cobban et al 2006 11 Nothosaur Nothosauridae SMNS84517 21.859 13.18 237-235 237 235 236 1.658497724 Label (Oberer Muschelkalk); Ogg et al. 2004 12 Pistosaur Pistosaurus SMNS 81918 19.819 4.973 237-235 237 235 236 3.985320732 Label (Oberer Muschelkalk); Ogg et al. 2004 13 Nothosaur Simosaurus gaillardoti SMNS 820221 26.489 9.196 237-235 237 235 236 2.880491518 Label (Oberer Muschelkalk); Ogg et al. 2004 14 Nothosaur Simosaurus SMNS7862 36.891 9.906 237-235 237 235 236 3.724106602 Label (Oberer Muschelkalk); Ogg et al. 2004 15 Nothosaur Simosaurus SMNS 18373 26.842 13.498 237-235 237 235 236 1.988590902 Label (Oberer Muschelkalk); Ogg et al. 2004 16 Nothosaur Nothosaur GPIT-RE-1533 7.079 6.807 237-235 237 235 236 1.039958866 Label (Oberer Muschelkalk); Ogg et al. 2004 17 Nothosaur Nothosaurus GPIT-RE-01863 36.008 23.529 237-235 237 235 236 1.530366781 Label (Oberer Muschelkalk); Ogg et al. 2004 18 Nothosaur Nothosaurus sp GPIT-RE-01532 5.48 4.961 237-235 237 235 236 1.104616005 Label (Oberer Muschelkalk); Ogg et al. 2004 19 Nothosaur Nothosaurus sp GPIT-RE-01315 7.497 12.355 237-235 237 235 236 0.606798867 Label (Hauptmuschelkalk); Ogg et al. 2003 20 Nothosaur Nothosaurus sp GPIT-RE 11.229 5.147 233-232 233 232 232.5 2.181659219 Label (Lettenkeuper); Ogg et al. 2004 21 Pachypleurosaur Neusticosaurus edwardsii T3758 0.611 0.221 228-230 228 230 229 2.764705882 Sander 1989; Ogg et al 2004 22 Pachypleurosaur Neusticosaurus edwardsii T3775 0.782 0.253 228-230 228 230 229 3.090909091 Sander 1989; Ogg et al 2004 23 Pachypleurosaur Neusticosaurus peyeri T3403 0.138 0.094 228-230 234 231 232.5 1.468085106 Sander 1989; Ogg et al 2004 24 Pachypleurosaur Neusticosaurus peyeri T3445 0.973 0.339 228-230 234 230 232 2.87020649 Sander 1989; Ogg et al 2004 25 Pachypleurosaur Serpianosaurus T3675 0.558 0.262 237 237 237 237 2.129770992 Rieppel 2000; Ogg et al 2004 26 Polycotylidae Trinacromerum (Ceraunosaurus) brownorum 401.537 167.632 94-93 94 93 93.5 2.395348144 Thurmond 1968; Cobban et al 2006 27 Polycotylidae Dolichorhynchops tropecensis MNA V10046 122.926 61.32 93.5-92 93.5 92 92.75 2.004664057 McKean 2011 28 Polycotylidae Eopolycotylus rankini MNA V9445 250.881 146.492 93.5-92 93.5 92 92.75 1.712591814 Albright et al 2007 29 "Plesiosauridae" Hauffiosaurus zanoni 54.693 55.945 183-180 183 180 181.5 0.977620878 Vincent 2010; Palfy et al 30 Elasmosauridae Hydrotherosaurus UCMP33912 437.884 124.813 70-68 70 68 69 3.508320447 Welles 1943; Martin 1964; Cobban et al 1967 31 "Plesiosauridae" Occitanosaurus tournemirensis MMM J. T. 86-100 39.551 17.449 178-180 178 180 179 2.266662846 Bardet et al 2003; Palfy et al 32 "Plesiosauridae" Plesiosaurus dolichodeirus BMNH22656 84.794 31.087 191-189.5 191 189.5 190.25 2.727635346 Storrs 1997; Ogg et al. 2004 33 Rhomaleosauridae Rhomaleosaurus thortoni BMNH R4853 221.811 139.987 183-178 183 178 180.5 1.584511419 Smith 2007; Palfy et al 34 Elasmosauridae Thalassomedon dentonensis TMM4225-1 451.519 107.651 93 93 93 93 4.194285237 Storrs 1981; Cobban et al 2006 35 Polycotylidae Dolichorhynchops (Trinacromerum) bonneri P80.06.14 226.712 106.37 80 80 80 80 2.131352825 Nicholls 1988; Cobban et al 2006 36 Polycotylidae Trinacromerum bentonianum FHSM VP71 202.631 127.742 93.5 93.5 93.5 93.5 1.586251977 Ketchum and Benson 2009 37 Elasmosauridae Cardiocorax 707.745 52.248 69 69 69 69 13.54587735 Our work 38 "Plesiosauridae" Westphaliasaurus simonsensii (P58091) 87.108 24.092 188 188 188 188 3.615640046 Schwermann and Sander 2011 39 Basal cryptoclidids Cryptocleidus eurymerus R2616 188.482 18.699 164.7-161.2 164.7 161.2 162.95 10.07979036 Ketchum and Benson 2009 40 Basal cryptoclidids Muraenosaurus leedsii R3704 167.651 18.688 164.7-161.2 164.7 161.2 162.95 8.971050942 Ketchum and Benson 2009 41 Basal cryptoclidids Muraenosaurus beloclis 81.097 16.098 164.7-161.2 164.7 161.2 162.95 5.037706547 Ketchum and Benson 2009 42 Basal cryptoclidids Tricleidus seeleyi 102.014 16.581 164.7-161.2 164.7 161.2 162.95 6.152463663 Ketchum and Benson 2009 43 Elasmosauridae Callawayasaurus 527.286 127.335 125-121 125 121 123 4.140935328 Welles 1962; Ogg et al 2004
Supplementary Table 3 Radius Ratios Basal Plesiosauria Archaeonectrus rostratus 2.000 189.7 Basal Plesiosauria Attenborosaurus conybeari 1.510 189.7 Pistosauria Augustasaurus hagdorni 4.500 238.5 Pliosauria BEDFM1999/2001 1.020 165.5 Pliosauria BMNHR2439 0.930 163 Elasmosauridae Callawayasaurus colombiensis 1.150 120 Basal Cryptocleididae Cryptoclidus eurymerus 1.300 162.5 Polycotylidae Dolichorhynchops osborni 0.680 82.5 Polycotylidae Edgarosaurus muddi 0.650 110 Basal Plesiosauria Eurycleidus arcuatus 2.360 199 Basal Plesiosauroidea Hauffiosaurus zanoni 2.100 184 Plesiosauridae Hydrorion brachypterygius 2.600 183 Elasmosauridae Hydrotherasaurus alexandrae 1.000 67.5 Plesiosauridae Microcleidus homalospondylus 1.600 183 Basal Plesiosauroidea MMUMLL8004 2.100 183 Basal Cryptocleididae Muraenosaurus leedsii 1.250 165.5 Leptocleididae Nichollssaura borealis 1.130 111 Plesiosauridae Occitanosaurus tournemirensis 2.200 179 Basal Plesiosauria OUMNHJ.02247 1.070 193 Polycotylidae Palmulasaurus quadratus 0.920 93 Plesiosauridae Plesiosaurus dolichodeirus 3.000 193 Basal Plesiosauria ‘Plesiosaurus’ macrocephalus 2.250 194 Polycotylidae QMF18041 1.100 100 Pliosauria Rhomaleosaurus victor 1.800 183 Pliosauria Rhomaleosaurus zetlandicus 1.910 183 Plesiosauridae Seeleyosaurus guilelmiimperatoris 1.610 183 Pliosauria Simolestes vorax 1.350 164 Nothosauria Simosaurus gaillardoti 7.300 232 Elasmosauridae Styxosaurus snowii 0.930 75 Elasmosauridae Terminonatator ponteixensis 0.750 70 Basal Cryptocleididae Tricleidus seeleyi 1.060 163 Elasmosauridae Cardiocorax 0.77 70
Supplementary Data “A new elasmosaurid from the early Maastrichtian of Angola and the implications of girdle morphology on swimming style in plesiosaurs “ Ricardo Araújo1,2*, Michael J. Polcyn1, Anne S. Schulp3, Octávio Mateus2,4, Louis L. Jacobs1 ,António Olímpio Gonçalves5 & Maria-Luísa Morais5 1Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas, 75275, USA; 2Museu da Lourinhã, Rua JoãoLuís de Moura, 2530-157 Lourinhã, Portugal; 3Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, The Netherlands and Natuurhistorisch Museum Maastricht, Maastricht, The Netherlands and Faculty of Earth and Life Sciences, Amsterdam VU University, Amsterdam, The Netherlands; 4Universidade Nova de Lisboa, CICEGe, Faculdade de Ciências e Tecnologia, FCT, 2829-516 Caparica, Portugal; 5Departamento de Geologia, Faculdade de Ciencas, Universidade Agostinho Neto, Avenida 4 de Fevereiro 7, Luanda, Angola. Corresponding author: rmaraujo@smu.edu Eosauropterygia pectoral girdle database We examined 43 Eosauropterygia specimens with complete pectoral girdles (Supplementary Table1). The areas of their pectoral girdle elements were calculated using ImageJ (Schneider et al., 2012). The humeral and radius ratios derive directly from Ketchum & Benson (2010) from 40 specimens preserving the humerus (Supplementary Table 2) and 32 preserving the radius (Supplementary Table 3). Phylogenetics morphometrics methods The placodonts Cyamodus hildegardis, Psephochelys polyosteoderma and Placodus gigas SMF R-1035, the pistosaur Kwangsisaurus orientalis IVPP V2338 and the nothosaur Sanchiaosaurus dengi IVPP V2338 were not included because their morphology is too specialized within Sauropterygia. Basal Eosauropterygia (pachypleurosaurs) are included. All landmarks are Bookstein’s type 2 (Bookstein, 1991). Landmarks were digitized using tpsDig2, after being assembled in tpsUtil (http://life.bio.sunysb.edu/morph/soft-utility.html). In tpsRelW only the alignment was saved, placing all taxa in the same coordinate system and standardizing size (option “Save aligned specimens”). The resulting *.tps file was parsed to run in TNT v1.1 (Goloboff et al., 2008), resulting in a 40x14-pair matrix in which each element is a pair of x, y coordinates referring to the aligned location of each landmark mapped in a two 2D space. The choice of a 2D landmark character is justified because the Eosauropterygia coracoid is a flat, splayed bone. The script used was landsch.run, available at http://tnt.insectmuseum.org/index.php/Scripts. A total of 14 landmarks were placed for all taxa analyzed following a homology statement and evolutionary scheme proposed in (Araújo and Correia, in press). This homology statement precludes that the posterior border of the coracoid elongated anteroposteriorly in the nothosaur-plesiosaur transition (Araújo and Correia, in press). Also, that the pectoral fenestrum in plesiosaurs is homologous to the “coracoid foramen” in nothosaurs, and the anteromedial coracoid contact was established in plesiosaurs as a result of a medial migration of the medially a coracoid expansion in nothosaurs (Araújo and Correia, in press), equivalent to landmark 6.A crucial advantage of phylogenetic morphometrics is that other alternative homology schemes and evolutionary models can be proposed and tested using a parsimony criterium. The phylogenetic morphometrics method demands that the specimens are re-aligned during the search for the most parsimonious tree. Data realignment involves superimposing landmark configurations for best fit, and the residual differences can be solved by simple translations and rotations of the landmarks. Rho-theta resistant fit analysis (RFTRA, Rohlf& Slice, 1990) and heuristic minimization of differences (Catalano et al., 2010; Catalano &Goloboff, 2012) are available in TNT. The heuristic minimization of differences is a superimposition technique that minimizes the linear distances in relation to a prescribed configuration (in this case Neusticosaurus pusillus). Neusticosaurus pusillus was selected as outgroup because it is a basal pachypleurosaurid in several phylogenetic analyses (Rieppel, 2000; Liu et al., 2011). Both of these re-alignment methods were used and ran at all prescribed levels of search thoroughness (level 0 to 4). The levels of search thoroughness are determined by number of replicates (i.e., number repetition of the algorithm for the same matrix), termpoints (i.e., inclusion of the geometric medians between inter-taxic homologous landmarks as possible reconstruction points of the ancestral location), number of cells in the grid (i.e, the higher the number of cells, the greater number of ancestral landmark position reconstructions), nesting level (i.e., the level/number of grids being nested within the original grid), neighbors level (ie., the number of neighboring cells that are included to form a nested grid). High levels of thoroughness require longer run times and more computer processing power, other than these factors the higher the level of thoroughness the more parsimonious the expected results. Selection among the different resulting trees is based upon the provided tree score. The lower the tree scores the more parsimonious the results (Goloboff & Catalano, 2011; Catalano & Goloboff, 2012). See all trees produced below in Supplementary Figures 4-13. Comparisons and implications of phylogentic morphometrics Phylogenetic morphometrics (Goloboff & Catalano, 2011) allows evaluation of landmark configuration schemes providing a test to models of morphological evolution. Parsimony analysis is used to test an evolutionary hypothesis of the evolution of the coracoid outline. Parsimony analysis, as used in traditional phylogenetic analysis, can be extended to a two- or three-dimensional realm with phylogenetic morphometrics. By only using a single phylogenetic morphometric character, the outline of the coracoid, we were able to provide a testable model of the evolution of this element in Eosauropterygia and clearly discern the two main morphotypes: Elasmosauridae (i.e., short preglnoid projection, and intercoracoid vaciuity) and Polycotylidae (i.e., long preglenoid projection, developed posterior wings of the coracoid, and no large intercoracoid fenestration) (Fig. 5a). Surprisingly, the phylogenetic significance of the coracoid shape is clearly demonstrated by the fact that the most parsimonious cladogram (tree score is 4.2, Fig. 5d) broadly mirrors the current understanding of the relationships among Eosauropterygia derived using traditional methods (see Liu et al., 2011). Evolutionary changes in the pectoral girdle Non-Plesiosaur Eosauropterygia— The reorganization of the pectoral girdle in the basal neodiapsid-pachypleurosaur is marked by profound morphological transformations (Fig. 6): (1) major reduction of the interclavicle including the posterior process, (2) the reduction of the coracoid buttresses, (3) the reduction of the scapula dorsal blade, (4) the coracoid re-orientation to the horizontal plane, (5) the ventralization of the scapula, (6) the formation of the clavicular-scapular arch. This important morphological gap is unknown in the fossil record although the answer may lie in Early Triassic marine/transitional sedimentary record. Although nothosaur and pachypleurosaur pectoral girdles are somewhat conservative morphologically, they are readily distinct from their basal neodiapsid ancestors (Fig. 6). These osteological, and inferred mycological modifications are adaptations for a marine lifestyle (e.g., re-orientation of the scapula and coracoid), and associated atrophy of terrestriality-related features (e.g., reduction of the coracoid buttresses, see above). Without understanding these basal transformations, it is not possible to correctly interpret the condition in highly derived eosauropterygians, such as plesiosaurs. The coracoid is a morphologically conservative element in pachypleurosaurs and nothosaurs (Rieppel, 2000, Fig. 6). Across the evolution of Eosauropterygia the major transformations of the coracoid occur during the pistosaur to plesiosaur transition (Fig. 6 and Fig. 5a: note the landmark optimization on the hypothetical ancestor reconstruction at the Corosaurus/Pistosaurus node). The major transformations are (see Fig. 5b,c): (1) the median migration of the medial coracoscapular contact, with the formation of the anterior projection of the coracoid (landmark 5, accounting for 7.6% of the total tree score); (2) the reorientation of the thickened glenoidal portion (landmark 7, accounting with for 8.1% of the total tree score); (3) posterior expansion of the coracoid (landmarks 10, 11, 12, 13, 14, accounting for 40% of the total tree score. Landmark 5 depicts an analogous model of morphological transformation to that proposed by Liu et al. (2011) cladistic analysis. Rieppel’s model proposes that the coracoid foramen is much enlarged in plesiosaurs, yet without providing further details on how this transformation occurred. Along these lines, we propose that the median migration of the medial scapula-coracoid contact left a large opening typically designated in plesiosaurs as the pectoral fenestration, and is homologous to the coracoid foramen in non-plesiosaur eosauropterygians (see also Araújo and Correia, in press). Landmark 7 depicts the observation made by Sues (1987) in which the thickened glenoidal portion of Pistosaurus is oriented diagonally relative to the anterioposterior axis of the coracoid, but in more derived sauropterygians the thickened glenoidal portion is oriented transversely. Landmarks 10 through 14 depict the expansion of the coracoid’s lateral border posteriorly, previously noted by Watson (1924), which is thought to be a result of an muscle attachment area increase for the coracobrachialis and brachialis in derived pistosaurs and plesiosaurs (Fig. 5a). These muscles together with the supracoracoideus form a developmentally cohesive muscle group in reptiles called the ventral mass musculature (Sewertzoff, 1904). Plesiosaurs— The morphological disparity among the pectoral girdle elements in Plesiosauria has been acknowledged as having phylogenetic significance by White (1940) and Welles (1962), but has only recently been codified and used in phylogenetic analysis (O’Keefe, 2001;Drukenmiller& Russell, 2008; Ketchum & Benson, 2010; Benson et al., 2012; Evans, 2012, Benson &Druckenmiller, 2014). Microcleididae (sensu Benson et al., 2012), possesses the plesiomorphic conditions of a broad preglenoid projection, and reduced ventral portion of the scapula, reduced coracoid foramen, as well as retention of large clavicles and interclavicle (e.g., Westphaliosaurus, Seeleyosaurus). Leptocleididae share affinities with the Polycotylidae pectoral girdle in having a coracoid median perforations and a narrow but anteriorly expanded preglenoid projection (Fig. 6). On the other hand, Cryptocledidae (sensu Evans, 2012) shares affinities with Elasmosauridae (Fig. 4), but does not possess posterior lateral coracoid wings and no intercoracoid vacuity (Fig. 5). The pectoral girdle experienced major transformations across Eosauropterygia, for example with the formation of the longitudinal pectoral bar. In non-plesiosaur eosauropterygians, the scapulae do not meet medially. Instead, they are separated by a large pectoral fenestra (Rieppel, 2000). Medially, the coracoids abut weakly and, the clavicles strongly interlock. In plesiosaurs, the median migration of the medial coracoscapular contact and the reduction of the preglenoid projection allow a scapula-scapula contact (Fig. 6), although in basal plesiosaur forms the scapula-scapula contact is weak or inexistent (see Smith, 2007 following phylogeny of Benson et al., 2012). An extensive longitudinal bar is only present in some elasmosaurids such as Cardiocorax and YPM1644 (potentially also in Libonectes and Elasmosaurus), which increases muscle attachment area and reinforces the pectoral girdle as a single structural unit. In these taxa and other Late Cretaceous elasmosaurids, the ventral area of the scapula is subequal to the area of the coracoid (Fig. 7b). However, in polycotylids, plesiosaurids, Lower Creteceouselasmosaurs and basal cryptocleidids the ventral area of the scapula remains small (<0.4) relative to the coracoid area (Fig. 7b). The most extreme case is in plesiosaurids in which the ventral area of the scapula is only about 15% of the area of the coracoid (Fig. 7b). On the other hand, in Cardiocorax the coracoid has nearly 50% more the area of the scapula-clavicle complex together (Fig. 7). Such discrepancies among plesiosaurs seem to suggest that not only the locomotory muscles play different roles from clade to clade but also the enlargement of the coracoid is decoupled from the ventral expansion of the scapula (see also Fig. 7b). The clavicle and its relationship with the scapula is subject of a remarkable transformation in Eosauropterygia as well. In non-plesiosaur eosauropterygians the clavicles are tightly sutured together medially and oriented transversely (e.g., Nothosaurus) or obliquely anteriorly (e.g., Ceresiosaurus). Also the scapula and clavicle form a rigid structural unit by means of a posterior process of the clavicle that tightly articulates with the medial side of the scapula (Rieppel, 2000). However, in all plesiosaurs the clavicle-interclavicle complex becomes greatly reduced including basalmost taxa such as Macroplata (Ketchum & Smith, 2010) or Attenborosaurus (Sollas, 1881), or even in Late Cretaceous polycotylids (e.g., Dolichorhynchopssee Williston, 1903). The scapuloclavicular articulation is in most cases weak (e.g., Attenborosaurusconnybeari, Rhomaleosauruscramptoni, Peloneustesphilarcus, Hauffiosauruszanoni, Westphaliasaurussimonensii, Tricleidusseeleyi, Leptocleidussuperestes, Dolichorhynchopsosborni) but it can be extensively developed anteriorly in Late Cretaceous Elasmosauridae (e.g., TMM2245-1, Cardiocoraxmukulu, and possibly YPM1644). In these late Cretaceous elasmosaurs the clavicle can account for nearly the half area as the scapula (e.g., Cardiocorax, Fig. 3). The pistosaur-plesiosaur median migration of the medial of the coracoscapular contact is not well documented in the fossil record (Fig. 5a), leaving an important morphological gap (Fig. 6). Nevertheless, these modifications had to occur concomitantly with (1) a counterclockwise rotation of the scapuloclavicular contact, which led to a posterior translation of the clavicle-interclavicle complex, (2) a medial elongation of the scapula, and (3) the anterior projection of the preglenoid projection of the coracoid. However, the presence of a medial coracoscapular contact is highly homoplastic even within the same taxa (e.g., Microcleididae: M. tournemirensis versus Westphaliasaurus, Rhomaleosauridae: Rhomaleosaurus cramptoni versus Meyerasaurus victor, Elasmosauridae: Callawayasaurus versus Cardiocorax). Nevertheless, if the medial coracoscapular contact is maintained it only abuts on the lateral side of the preglenoid projection (e.g., Macroplata, Meyerasaurus, Thalassiodracon, Plesiosaurus, Dolichorhynchops herschelensis). In Elasmosauridae and basal cryptocleidids the condition is slightly different because the preglenoid projection is narrowed, thus the medial coracoscapular contact adjoins anteriorly. Another feature poorly documented in the fossil record is the expansion of the coracoid (Fig. 6), possibly due to the scarce Late Triassic eosauropterygian record. Regardless, the scarce pistosaur record shows high morphological disparity in the coracoid (Fig. 5a, 6, 7a). The results demonstrate a convergence between basal cryptoclidids (Muraenosaurus, Tricleidus and Cryptocleidus) and polycotylids due to the narrow preglenoid projection and the absence of intercoracoid vacuity (landmarks 4, 5, 9 and 10). References Araújo R. & Correia F., (in press) Soft-tissue anatomy of the plesiosaur pectoral girdle inferred from basal Eosauropterygia taxa and the extant phylogenetic bracket. Palaeontologia Electronica. Bookstein, F.L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press. 435 pp. Benson R.B.J., Evans, M. & Druckenmiller, P.S., 2012. High Diversity, Low Disparity and Small Body Size in Plesiosaurs (Reptilia, Sauropterygia) from theTriassic–Jurassic Boundary. PLoS ONE 7(3): e31838. doi:10.1371/journal.pone.0031838 Benson, R.B., & Druckenmiller, P.S., 2014. Faunal turnover of marine tetrapods during the Jurassic–Cretaceous transition. Biological Reviews, 89(1): 1-23. Catalano, S.A., Goloboff, P. & Giannini, N., 2010. Phylogenetic morphometrics (I): the use of landmark data in a phylogenetic framework. Cladistics 26: 539–549. Catalano, S. & Goloboff, P., 2012. Simultaneously mapping and superimposing landmark configurations with parsimony as optimality criterion. Systematic Biology 61: 1-9. Druckenmiller, P.S. & Russell, A.P., 2008. A phylogeny of Plesiosauria (Sauropterygia) and its bearing on the systematic status of Leptocleidus Andrews, 1922. Zootaxa1863: 1–120. Evans, M., 2012. A new genus of plesiosaur (Reptilia: Sauropterygia) from the Pliensbachian (Early Jurassic) of England, and a phylogeny of the Plesiosauria. Unpublished PhD thesis, University of Leicester. 397 pp, Goloboff, P.A. & Catalano, S.A., 2011. Phylogenetic morphometrics (II): algorithms for landmark optimization. Cladistics 27: 42-51. Goloboff, P.A., Farris J.S. & Nixon, K.C., 2008. TNT, a free program for phylogenetic analysis. Cladistics24: 774–786. Ketchum, H.F. & Benson R.B.J., 2010. Global interrelationships of Plesiosauria (Reptilia, Sauropterygia) and the pivotal role of taxon sampling in determining the outcome of phylogenetic analyses. Biological Reviews85: 361-392. Ketchum, H.F. & Smith, A.S., 2010. The anatomy and taxonomy of Macroplatatenuiceps (Sauropterygia, Plesiosauria) from the Hettangian (Lower Jurassic) of Warwickshire, United Kingdom. Journal of Vertebrate Paleontology30: 1069–1081. Liu, J., Rieppel, O., Jiang, D.-Y., Aitchison, J.C., Motani, R., Zhang, Q.-Y., Zhou, C.-Y. & Sun, Y.-Y., 2011. A new pachypleurosaur (Reptilia: Sauropterygia) from the Lower Middle Triassic of Southwestern China and the phylogenetic relationships of chinese pachypleurosaurs. Journal of Vertebrate Paleontology31: 292-302. O’Keefe, F.R. 2001. A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia). Acta Zoologica Fennica 213: 1-63. Rieppel, O., 2000. Sauropterygia I: Placodontia, Pachypleurosauria, Nothosauria, Piatosauroidea. In: Wellnhofer, P. (Ed.), Encyclopedia of Palaeoherpetology, Vol. 12A. Pfeil, Munich 1-134. Rohlf, F.J. & Slice, D.E., 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology39: 40-59. Schneider, C.A., Rasband, W.S. &Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671-675. Sewertzoff, von A.N., 1904. Die Entwickelung der pentadactylenExtremität der Wirbeltiere. AnatomischerAnzeiger25: 472-495. Smith, A.S., 2007. Anatomy and systematic of the Rhomaleosauridae (Sauropterygia: Plesiosauria). Unpublished PhD Thesis, University College Dublin, Republic of Ireland. 278 pp. Sollas,W.J., 1881. On a new species of Plesiosaurus (P. conybeari) from the Lower Lias of Charmouth; with observations on P. megacephalus, Stutchbury, and P. brachycephalus, Owen. Quarterly Journal of the Geological Society London 37: 440–480. Sues, H.-D., 1987. Postcranial skeleton of Pistosaurus and interrelationships of the Sauropterygia (Diapsida). Zoological Journal of the Linnaean Society 90: 109–131. Watson, D.S., 1924. The elasmosaur shoulder girdle and fore-limb. Proceedings of the Zoological Society London 2: 885-917. Welles, S.P., 1962. A new species of elasmosaur from the aptian of Colombia and a review of the Cretaceous plesiosaurs. University of California Publications Geological Sciences 44: 1-96. White, T.E., 1940. Holotype of Plesiosaurus longirostris Blake and classification of the Plesiosaurs. Journal of Paleontology 14: 451–467. Williston, S.W., 1903. North American Plesiosaurs. Field Columbian Museum, Geological Series 2: 1–16. Supplementary Table Captions Supplementary Table 1 – Dataset for figure 7C; Ratio between the dorsal blade of the scapula (cm2) and ventral area of the scapula. Supplementary Table 2– Dataset for figure 7D; Humeral Ratios. Supplementary Table 3– Dataset for figure 7E; Radius Ratios Figure Captions Supplementary Figure 1 – Phylogenetic tree resulting from Ketchum & Benson (2010) datamatrix (refer to methods for details; pruned version of this tree illustrated in Figure 4.) Supplementary Figure 2 – Phylogenetic tree using matrix and settings of Vincent et al. (2011). Supplementary Figure 3 – Landmark configurations used for phylogenetics morphometrics analysis; see Figure 5 for preferred tree. All trees illustrated in Supplementary Figures 4-13. Supplementary Figure 4 – Best tree using search level of thoroughness 3 with Heuristic re-alignment. Supplementary Figure 5 – Best tree using search level of thoroughness 4 with Heuristic re-alignment. Supplementary Figure 6 – Tree using search level of thoroughness 0 with Heuristic re-alignment. Supplementary Figure 7 – Tree using search level of thoroughness1 with Heuristic re-alignment. Supplementary Figure 8 – Tree using search level of thoroughness 2 with Heuristic re-alignment. Supplementary Figure 9 – Tree using search level of thoroughness 0 with RFTRA re-alignment. Supplementary Figure 10– Tree using search level of thoroughness 1 with RFTRA re-alignment. Supplementary Figure 11 – Tree using search level of thoroughness 2 with RFTRA re-alignment. Supplementary Figure 12 – Tree using search level of thoroughness 3 with RFTRA re-alignment. Supplementary Figure 13 – Tree using search level of thoroughness 4 with RFTRA re-alignment.