Academia.eduAcademia.edu
Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 First Record of Striped Catfish Pangasianodon hypophthalmus (Sauvage, 1878) (Pisces: Pangasiidae) from Inland Waters of Iraq Najim R. Khamees, Atheer H. Ali, Jassim M. Abed and Thamir K. Adday Department of Fisheries and Marine Resources, College of Agriculture, University of Basrah, Basrah, Iraq e-mail: atheer_h_ali@yahoo.com Abstract. Two specimens of catfish were recorded for the first time from two different natural waters in Iraq. The first specimen was 67.7 mm. in total length, collected during a study on fish parasites of Ibn Najim marsh in the middle of Iraq during 2009. The second specimen was 312 mm in total length, captured during a survey on fishes of Shatt Al-Basrah canal south of Iraq in 2011. Twelve local aquarium pangasiids (Imported from the Philippines) were examined for morphometric and meristic characteristics for comparison. The results indicated that the aquarium specimens are closely allied to the wild specimens, all were identical with the genus Pangasianodon. The studied fish had characters share with P. hypophthalmus (Sauvage, 1878). The new occurrence of the striped catfish in Iraq, might be due to aquarium escape. Key words: Pangasianodon hypophthalmus, alien fish, Pangasiidae, inland waters, Aquarium, Iraq. Introduction The inland water of Iraq includes mainly the Tigris river, Euphrates river and Shatt AlArab river. Many tributaries, lakes, reservoirs and marshes are also present. Historically, this environment was the niche of highly important unique commercial freshwater fishes. The majority of fish species of inland water of Iraq are belong to the order Cypriniformes (13). Comparing lists from the 1960s and 1970s with that of the 1980s, it is clear that the number of fish species has dropped dramatically, as they were replaced by introduced and alien species such as Cyprinus carpio, Carassius auratus, Ctenopharyngodon idella, Hypophthalmichthys molitrix, Gambusia halbrooki, Heteropneustes fossilis (3;4), Tilapia zillii (1; 2), Oreochromis aureus (14), Hemiculter leucisculus (5) and Poecilia latipinna (4). Such major replacements in the species composition are mainly due to significant changes in the environment e.g. ditch, dike, and drain the marshes of southern Iraq (22) and due to industrial and sewage pollutions, in addition to harmful agricultural activities. Recently many native cyprinids in Iraq are reported as red list. During a study on fish parasites of Ibn Najim Marsh, in the middle of Iraq, many fish samples had been sent to the senior author (N.R.K.) for identification. The specimens consisted one small catfish, that identical with the family Pangasiidae. Two years later, another fish specimen of the same group, was collected from Shatt Al-Basrah canal, Basrah province, south of Iraq. The invasion of such fish to the inland waters of 481 Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 Mesopotamia, could affect the native fishes community negatively, since they have very large sizes in addition to their predatory mode (16; 27). According to Froese and Pauly (8) the family Pangasiidae consists of 4 genera and a total of 29 species. The present study was conducted to identity of the fish and to detect the source of the invasion. Materials and methods Two specimens of striped catfish were collected from two different localities in Iraq. The first specimen was 67.7 mm in total length, collected during a study on fish parasites of Ibn Najim marsh (32˚ 08' N, 44˚ 35' E) in the middle of Iraq during 2009. The second specimen was 312 mm in total length, captured during a survey on fishes of Shatt Al-Basrah canal (30°27’–30°28’N and 47°49’–47°50’E) south of Iraq in 2011. 12 local aquarium pangasiids Imported from the Philippines by local sellers of ornamental fish were examined for morphometric and meristic characteristics with intention to compare their characters with those of two wild fish specimens caught from middle and south of Iraq. The aid of digital calliper and Olympus dissecting microscope were used to measure of meristic and metric characters of fish. The measurements followed that clarified in Gustiano (10) which modified in Weicaszek et al. (27). The diagnosis of fish family and identification keys to genera and species followed Gustiano and Pouyaud (11). Gill rakers were counted on the first gill arches. All Specimens deposited in the department of fisheries and marine resources, College of Agriculture, Basrah University. Results Two specimens of striped catfish were recorded for the first time from two different natural waters in Iraq. The first specimen was 67.7 mm. in total length, collected during a study on fish parasites of Ibn Najim marsh in the middle of Iraq during 2009 (Fig. 1). The second specimen was 312 mm in total length, captured during a survey on fishes of Shatt Al-Basrah canal south of Iraq in 2011 (Fig.2). Twelve local ornamental pangasiids (Imported from the Philippines) were examined for morphometric and meristic characteristics for comparison (Fig. 3). The results indicated that the aquarium specimens are closely allied to the wild specimens, all were identical with the genus Pangasianodon. The studied fish had characters share with striped catfish P. hypophthalmus (Sauvage, 1878). Meristic characters (table 1), morphometric and metric characters (table 2) were clarified. 481 Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 Fig.1. P. hypophthalmus specimen collected from Ibn Najim Marsh. Fig. 2. P. hypophthalmus specimen collected from Shatt Al-Basrah canal. Fig. 3: P. hypophthalmus specimen collected from local ornamental tank. 481 . Table 1. Meristic characters of P. hypophthalmus of present study. 187 1* 2 3 4 5 6 7 8 9 10 11 12 13 14 ** Dorsal fin spine 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Dorsal fin ray 7 7 7 7 7 7 7 7 7 7 8 7 7 7 Pectoral fin spine 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Pectoral fin ray 10 9 9 9 8 8 8 8 8 9 9 8 10 10 Pelvic fin ray 1+7 1+7 1+7 1+7 1+7 1+7 1+7 1+7 1+7 1+7 1+7 1+7 1+7 1+7 Anal fin ray 32 33 32 32 31 33 32 32 32 32 33 31 32 5+27 *Fish caught from Ibn Najim marsh, **Fish caught from Shatt Al-Basrah Canal, the remaining specimens caught from aquarium tanks. Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 Numbering of specimen Character Table 2. Morphometric and metrical measurements of P. hypophthalmus in hundredths of standard length (SL), and head length (HD). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Color blue bars blue bars yellow bar blue bars yellow bar blue bars blue bars blue bars blue bars blue bars blue bars blue bars blue bars blue bars Date of collection 20 Mar.2009 T. L. 67.73 76.8 86 112 109.73 128.5 125.2 97.92 107.41 87.38 101.5 101.71 95.4 312 S. L. 56.53 62.12 66.64 91.29 91.16 106.5 99.33 79.57 88.93 73.23 83.09 83.44 81.78 222 Head L. 14.99 15.08 18.3 22.57 20.36 26.46 28 20.56 22.89 17.8 24 21.9 20.23 58.7 H. depth 7.56 10.02 11.11 11.46 12.9 12.73 13.1 13.3 13.99 10.45 12.89 13.33 13.03 40.7 H. width 8.84 10.66 12.11 12.37 15.47 16.47 16.8 13.33 15.16 10.47 13.38 15.16 12.23 41.77 Eye diametre 4.88 3.26 3.71 4.84 3.56 6.22 6 4.89 5.52 3.75 4.98 5.48 3.82 11.35 Predorsal L. 20 22.29 26.68 33.7 31.83 40.6 38.5 31.73 35.15 27.88 32.95 32.85 29.15 95.08 Mandible barble L. 5.55 6.72 6.05 8.2 7.91 8.61 9.42 5.71 8.52 9.13 6.85 7.29 8.43 7.67 Maxill. barble L. 10.34 10.66 10.92 17.37 18.34 15.15 17.56 11.05 16.77 13.7 13.27 10.84 15.22 12.4 4,1, 15 4,1, 13 4,1,16 4,1, 14 4,1,15 (20) 4, 1, 12 4,1,27 - - - - (17) (32) 18.84 10.08 14.63 43.3 Gill rakers in first arch (total) Caudal peduncle L. 10.18 Mar 2010 (20) (18) (21) (19) 10.4 11.98 15.75 16.19 Oct 2011 May 2010 17.85 4, 1, 15 (19) 11.68 12.07 11.2 13.71 Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 188 Number Table 2. Continued. 59.25 66.94 76.2 98.08 94.25 112.3 106.2 86.52 94.44 74.36 88.84 89.66 86.95 270 Snout L. 3.4 3.21 5.25 6.37 5.93 10.06 8.64 6.86 6.74 6.02 7.1 7.44 7.1 18.38 Anterior snout W. (3a) 2.76 3.3 3.74 5.06 4.02 5.6 5.85 4.32 5.45 4.3 5.09 7.17 6.52 11.56 Posterior snout L.(3b) 1.45 1.29 2.4 2.12 2.28 1.94 1.87 1.58 1.46 1.5 2.49 1.59 2.36 7.94 Caudal peduncle depth 4.1 4.8 5.82 7.24 6.46 12.2 9.9 6.94 7.76 5.35 6.82 8.43 6.31 22.57 Pectoral fin L. 10.67 10.76 12.43 12.91 13.6 18.37 19.4 14.3 18.21 11.94 12.66 13.84 12.66 46 Pectoral spine L. 8.02 8.49 11 11.64 11.67 14.53 16.38 12.69 12.63 13.1 11.16 12.9 10.63 36.47 Dorsal fin L. 12.32 12.08 13.27 18.7 17.53 21.66 17.65 15.55 16.94 15.34 15.68 15.9 15.28 54.85 Dorsal spine L. 10.6 9.03 11.39 13.36 14.06 17.12 14.02 12.5 13.93 10.08 12.87 13.4 111.15 40.57 Dorsal spine width 0.82 0.58 0.77 0.97 0.89 0.63 1.4 0.68 0.77 0.69 1.24 0.63 0.61 2.68 Pelvic fin L. 7.48 6.28 8.12 11.04 12.16 12.13 12.01 7.71 9.06 8.24 9.98 9.73 10.87 31.6 Anal fin height 8.7 7.6 10.5 12.9 12.62 13.7 16.38 11.03 11.66 10 11.24 11.47 11.57 30.1 Anal fin L. 16.61 20.79 21.06 29.65 28.69 33.22 33.17 26.13 27.49 20.8 26.96 25.8 25.86 34.14 Adipose fin H. 3.85 3.01 5.27 3.8 5.53 5.85 7.32 3.28 5.23 5.03 4.39 5.13 4.74 10.68 Adipose fin W. 1.26 1.32 1.56 2.37 2.42 2.01 2.92 1.68 2.07 1.57 1.92 1.84 1.93 4.31 Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 189 Fork L. Table 2. Continued. 5.32 5.13 5.86 7.75 6.54 7.87 9.12 7.12 8.62 5.58 6.06 7.61 6.38 10.41 Lower jaw L. 2.92 3.08 3.4 5.28 4.38 3.63 5.27 3.64 4.44 3.15 3.84 3.33 3.33 11.93 Interorbital L. 6.55 7.53 10.94 12.25 13.72 13.61 13.53 10.85 13.93 7.85 12.36 13.19 10.27 37.1 Distance snout to isthmus 9.8 7.98 10.34 12.6 10.8 16.08 14.83 12.14 13.51 11.36 13.38 13.03 11.22 30.83 post ocular L. 6.44 7.25 9.05 11.92 12.07 13.42 14.73 11.99 12.76 9.2 11.6 10.78 10.84 36.24 Body W. 6.08 7.81 8.1 13.12 10.06 12 12.03 10.39 11.5 7..25 10.77 10.13 8.53 39.77 prepectoral L. 11.99 13.72 17.12 17.44 21.31 25.9 23.57 18.71 20.93 15.78 19.04 18.34 18.03 52.75 prepelvic L. 22.99 26.92 31.71 38.32 38.76 45.53 45.78 33.72 35.84 29.81 35.94 36.6 36.45 106.62 in % S. L. 190 H. L. 26.03 24.27 27.46 24.72 22.33 24.84 28.18 25.83 25.73 24.3 21.84 26.44 24.73 26.44 H. depth 13.37 16.13 16.67 12.55 14.15 11.95 13.2 16.71 15.73 14.27 15.51 15.97 15.93 18.3 H. W. 15.64 17.16 18.17 13.55 16.97 15.46 16.91 16.75 17.04 14.29 16.1 18.17 14.95 18.81 Caudal ped. L. 14.31 10.67 15.93 14.08 17.67 16.76 18.96 12.66 13.13 16.48 13.47 16.43 17.89 19.5 Caud. Ped. Depth 7.25 7.72 8.73 7.93 7.08 11.45 9.96 8.72 8.72 7.3 8.21 10.1 7.71 10.16 Pectoral spine L. 14.18 13.66 16.5 12.75 12.8 13.64 16.49 15.94 14.2 17.88 13.42 15.46 13 16.43 Pectoral fin L. 18.87 17.32 18.65 14.14 14.92 17.25 19.53 17.97 17.3 16.3 15.23 16.58 15.48 20.72 Dorsal spine L. 18.75 14.53 17.09 14.63 15.42 16.07 14.11 15.7 15.66 13.76 15.48 16.06 13.63 18.27 Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 Mouth W. Table 2. Continued. 21.79 19.44 19.91 20.48 19.23 20.33 17.76 19.54 19.04 20.94 18.86 19.05 18.68 24.7 Pelvic fin L. 13.23 10.11 12.18 12.09 13.34 11.39 12.09 9.68 10.18 11.25 12 11.66 13.29 14.23 Anal fin H. 15.39 12.23 15.75 14.13 13.84 12.86 16.49 13.86 13.11 13.65 13.52 13.74 14.14 13.55 Anal fin L. 29.38 33.46 31.6 32.47 31.47 31.19 33.39 32.83 30.91 28.4 32.44 30.92 31.62 38.13 Adipose fin H. 6.81 4.84 7.9 4.16 6.06 5.49 7.37 4.12 5.88 6.86 5.28 6.15 5.79 4.81 Adipose fin W. 2.22 2.12 2.34 2.59 2.65 1.88 2.94 2.11 2.32 2.03 2.31 2.2 2.36 1.94 Interorbital dis. 11.58 12.12 16.41 13.42 15.05 12.78 13.62 13.63 15.66 11.42 14.87 15.8 12.56 16.71 Body W. 10.75 12.57 12.15 14.37 11.03 11.26 12.11 13.05 12.93 11.74 12.96 12.14 10.43 17.91 Predorsal L. 35.37 35.88 40.03 36.22 39.05 38.12 38.76 39.87 39.52 38.07 39.65 39.37 35.64 42.83 Prepectoral L. 21.21 22.08 25.69 19.1 23.37 24.32 23.73 23.51 23.53 21.54 22.91 21.98 22.04 23.76 Prepelvic L. 40.66 43.33 47.58 41.97 42.52 42.75 46.09 42.37 40.3 40.7 43.24 43.86 44.57 48.16 IN % H. L. Snout L. 23.09 21.28 26.12 28.22 29.12 38.02 30.61 33.36 29.44 33.82 29.58 33.97 32.23 29.22 Anterior snout W. 18.75 21.88 18.6 22.42 19.74 21.16 20.73 21.01 23.8 24.15 21.2 32.74 32.23 18.37 Posterior snout L. 7.54 8.55 11.94 7.97 11.19 7.33 6.62 7.68 6.37 8.42 10.37 7.26 11.66 12.62 Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 191 Dorsal fin L. Table 2. Continued. 33.15 21.62 15.45 21.44 17.48 23.5 21.26 23.78 24.11 21.06 20.75 25.02 18.88 18.04 Mouth W. 36.14 34.02 29.15 34.33 32.12 29.74 32.32 34.63 37.65 31.34 25.25 30.86 31.53 36.75 Lower jaw L. 19.83 20.42 16.91 23.39 21.51 13.72 18.67 17.7 19.39 17.7 16 15.39 16.46 18.96 Distance snoutisthmus 65.37 52.32 51.44 55.82 53.04 60.77 52.55 59.04 59.02 63.82 55.75 59.5 55.46 49.01 43.75 48.07 45.02 52.81 59.28 50.72 52.19 58.31 55.74 51.68 48.3 49.22 53.58 57.61 Dorsal spine width 5.47 3.84 3.83 4.29 4.37 3.13 5 3.3 3.36 3.87 5.16 2.87 3.01 4.26 Max. barb. L. 39.92 41.96 36.15 76.96 90.08 57.25 62.22 53.74 73.26 76.96 55.3 49.5 75.23 19.71 Man. Barb. L. 21.42 34.33 20.03 36.33 38.85 32.54 33.38 27.77 37.22 51 28.5 33.28 41.67 12.19 Postocular L. Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 192 Eye Diam. Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 Discussion Pangasiidae are large catfishes (full grown adults 20 cm to 3 m Most species attaining 50 cm or more), with maxillary barbles, a single pair of mental or mandibular barbles, branchiostegial rays 7-11, adipose fin invariably present. Pelvic fin with 6 or 7-8 rays. Anal fin 26-46 rays. Principal caudal fin rays 8/9. Vertebrae 39-52 (24). The same authors revised the family Pangasiidae and recognized only two genera, Helicophagus Bleeker, 1858 with two valid species and Pangasius Valenciennes, 1840 with 19 valid species. Later one new species was added to the Helicophagus (15), and seven species to the Pangasius (20; 23; 17; 19; 12). Vidthayanon and Roongthongbaisuree (26) split the genus Pangasius to four subgenera, Pangasius (Pangasionadon) Chevy, 1930 with two species, Pangasius (Pteropangasius) Fowler, 1930 with two species, Pangasius (Neopangasius) Popta, 1904 with four species and Pangasius (Pangasius) with all remaining species. Pouyaud et al. (18) studied phylogenetic relationships among Pangasiids and they suggested that Pangasianodon and Pteropangasius could be elevated to the generic level. Pouyuad et al. (21) confirmed all subgenera in Vidthayanon and Roongthongbaisuree's study except Pangasius (Neopangasius) which is phylogenetic and should be included in Pangasius (Pangasius) based on molecular phylogenetic analysis. Gustiano (10) raised three subgenera that proposed in Vidthayanon and Roongthongbaisuree (26) to generic level. Ferraris (7) listed 30 species in five genera in the Pangasiidae, represented Pangasius (22 spp.); Helicophagus (3 spp.); Pangasianodon and Pseudolais all with 2 species and monotypic Cetopangasius. Gustiano and Pouyaud (11) distinguished four genera (Helicophagus, Pangasianodon, Pangasius and Pteropangasius) and provided a diagnostic characters and made keys to four genera of the Pangasiidae. Now Helicophagus, Pangasianodon, Pangasius and Pseudolais (syn. Pteropangasius) have 3, 2, 21 and 2 valid species respectively (8) Preliminary identification of single specimen (photo) of Pangasiid caught from Ibn Najim marsh as Pangasius by Dr. Brian Coad of the Canadian Museum of Nature on 2009 (See Coad, 2010). Reexamination of the wild and ornamental specimens and we found that they have 8 pelvic fin rays, long predorsal length (more than 35 % Standard length), slender dorsal spine width (3.5-5% head length) that fall in characters of genus Pangasianodon which proposed by Gustiano and Pouyaud (11). This genus was proposed by Chevey (6) for P. gigas, and distinguished it from closely related genus Pangasius on the bases of the absence of mandibulary barbles and teeth on the jaws and the palatine. The generic validity based on these characters which might be subject on age, led Smith (25) and other authors to get decision of doubtful validity of Pangasianodon. The controversy in the systematic status of Pangasianodon due to the unstable characters used in original description that studied only in adult specimens and the workers wait long time to caught juvenile for comparison (9). Fumihito (9) compared number of barbles, presence/absence of teeth and the position of eyes to the mouth level in 10 species of Pangasiidae belong to genera Helicophagus, Pangasianodon, Pangasius and Pteropangasius. She concluded that the teeth in the jaws, on the vomer and on the 193 Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 vomerine extensions are entirely absent in the adults, and retained in at least up to 21.7 cm standard length of P. gigas, the position of the eyes below the mouth angle in adult, while being of higher position in juveniles as in Pangasius species. Roberts and Vidthayanon (24) recognized only Pangasius and Helicophagus and considered Pangasianodon as synonym of Pangasius. The present meristic and morphometric and biometric measurements clarified in table 1 and based on the distinguished characters between P. gigas and P. hypophthalmus appeared in keys of Roberts and Vidthayanon (24), led us to conclude that the two wild and the 12 ornamental specimens have taxonomic characters of P. hypophthalmus, due to (i) development gill rakers (ii) head length less than 27 % of standard length (except in one ornamental specimen has 28.18 % S. L.) and (iii) mouth width less than 10 % standard length (except in Basrah canal specimen have 10.4 % S.L.). Although these minor differences found in some specimens not conspecific with that of P. gigas and it was considered intraspecific variation. Single specimen caught from Ibn Najim have relatively big eyes, but this case was considered as inflammatory reaction caused by the infection with the trematode Diplostomum metacercariae (cataract disease). Due to the small size of all specimens (Juveniles), the palatine and vomerine plates could not observed. Gill arches of P. hypophthalmus have small or rudimentary gill rakers which interspersed among larger rakers (24; 27). In the present study this peculiar circumstance was noticed only in wild specimen (relatively bigger specimen) which caught from Shatt Al-Basrah canal that given the higher counting of whole rakers (32 in compared with 17- 21 in other specimens). According to Wiecaszek et al. (27) number of gill rakers may increase with fish age. However the wide range in number of gill rakers of present sample fall within specific status of P. hypophthalmus that recorded in the literature. It is necessary to use genetic studies for accurate classification of member of this family, So it frequently hybrid have been existed between different species and genera from aquaculture or cross breeding (27). Acknowledgment We thank Dr. Brian W. Coad from Canadian Museum of Nature, Station D, Ottawa, Ontario, Canada for providing some interested literature and advices. References 1-Al-Sa'adi, B.A.E. (2007). The parasitic fauna of fishes of Euphrates River: Applied study in Al-Musaib city. M. Tech. Thesis, Al-Musaib Tech. Coll., Found. Tech. Educ., Baghdad: 102 pp. (In Arabic). 2-Al-Sa'adi, B. A., Mhaisen, F. T. & Al-Rubae, A.-R. L. (2012). The first parasitological report on the red belly tilapia Tilapia zillii (Gervais, 1848) in Iraq. Sci. Sym. Nat. Hist. Mus. & Sci. Cent. "Tilapia and its effect in Iraqi environment". Baghdad, 20 Jul.: 6 pp. 3-Coad, B. W. (1996). Exotic fish species in the Tigris-Euphrates basin. Zoology Middl. East, 13:71-83, 4 figures. 194 Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 4-Coad, B.W. (2010). Freshwater fishes of Iraq. Pensoft Publ., Moscow: 274pp. + 16pls. 5-Coad, B.W. & Hussain, N. A. (2007). First record of the exotic species Hemiculter leucisculus (Actinopterygii: Cyprinidae) in Iraq. Zool. Middl. East, 40(1): 107-109. 6-Chevey, P. (1930). Sur un nouveau silure géant du basin du Mékong Pangasianodon gigas nov. g. nov. sp. Bull. Soc. Zool. Fr., 55: 536-542. 7-Ferraris, C. J. Jr. (2007). Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes) and catalogue of siluriform primary types. Zootaxa, 1418:1-628. 8-Froese, R. & Pauly, D. (Eds.), (2013). FishBase. World Wide Web electronic publication. www.fishbase.org. (Version August 2013). 9-Fumihito, A. (1989). Morphological comparison of the Mekong giant catfish, Pangasianodon gigas with other pangasiid species. Jap. J. Ichth., 36(1): 113-119. 10-Gustiano, R. (2003). Taxonomy and phylogeny of Pangasiidae catfishes from Asia. Ph. D. Thesis. Leuven Univ. Belgium: 296 pp. 11-Gustiano, R. & Pouyaud, L. (2008). Systematic revision of the genera of Pangasiidae (Silurifomes, Ostariophysi). Indonesian aquacul. J., 3(1): 13-22. 12- Gustiano, R., Teugels, G. G. & Pouyaud, L. (2003). Revision of the Pangasius kunyit Catfish complex, with description of two new species from South East, Asia (Siluriformes: Pangasiidae). J. Nat. Hist., 37: 357-376. 13-Mahdi, N. (1962). Fishes of Iraq. Ministry of Education, Baghdad, 82 pp. 14-Mutlak, F. M. & Al-Faisal, A. T. (2009). A new record of two exotic cichlids fish Oreochromis aureus (Steindachner, 1864) and Tilapia zillii (Gervais, 1848) from the south of the main outfall drain in Basrah city. Mesopot. J. Mar. Sci., 24: 160-170. 15-Ng, H.H. and Kottelat, M. (2000). Helicophagus leptorhyncus, a new species of molluscivorous catfish from Indochina (Teleostei, Pangasiidae). Raffles Bull. Zool. 48:55-58. 16-Pimentel, D., Lach, L., Zuniga, R. & Morrison, D. (2000). Environmental and economic costs of nonindigenus species in the United States. BioScience, 50: 53-65. 17-Pouyaud, L. & Teugels G. G. (2000). Description of a new pangasiid catfish from East Kalimantan, Indonesia. Ichtyol. Explor. Freshwater, 11:193-200. 18-Pouyaud, L., Gustiano, R. & Legendre, M. (1998). Phylogenetic relationships among pangasiid catfish species (Siluriformes, Pangasiidae) and new insights on their zoogeography. Biol. Diver. Aquacul. Clariid & Pangasiid catfishes, South-East Asia, Proc. Mid-term workshop "catfish Asia proj." Cantho, Vietnam, 11-15 May 1998, Pp. 49-56. 195 Basrah J. Agric. Sci., 26 (Special Issue 1), 2013 19-Pouyaud, L., Gustiano, R. & Teugels, G. G. (2002). Systematic revision of Pangasius polyuranodon complex (Siluriformes: Pangasiidae) with description of two species. Cybium, 26: 243-252. 20-Pouyaud, L., Teugels, G. G. & Legendre, M. (1999). Description of a new pangasiid catfish from South-East Asia (Siluriformes). Cybium, 23: 247-258. 21-Pouyaud, L., Teugels, G. G., Gustiano, R. & Legendre, M. (2000). Contribution to the phylogeny of pangasiid catfishes based on allozymes and mitochondrial DNA. J Fish Biol., 56: 1509–1538. 22-Richardson, C. J. & Hussain, N. A. (2006). Restoring the garden of Eden: An ecological assessment of the marshes of Iraq. BioScience, 56(6): 477-489. 23- Roberts, T.R. (1999). Pangasius bedado a new species for moluscivorous catfish from Sumatra (Pisces: Siluriformes: Pangasiidae). Nat. Hist. Siam. Soc., 47: 109-115. 24-Roberts, T.R. & Vidthayanon, E. (1991). Systematic revision of the Asian catfish family Pangasiidae, with biological observations and descriptions of three new species. Proc. Acad. Nat. Sci. Philadelphia, 143,97-144. 25-Smith, H. M. (1945). The freshwater fishes of Seam or Thailand. Bull. U.S. Nat. Mus., 188: 1-628. 26- Vidthayanon, C. & Roongthongbaisuree, S. (1993). Taxonomy of Thai riverine catfishes family Schilbeidae and Pangasiidae. Nat. Inland Fish. Inst. Dept. Fish., Bangkok, Tech. paper, 150: 1-57. (In Thai with English summary). 27-Wiecaszek, B., Keszka, S. Sobecka, E. & Boeger, W. A. (2009). Asian pangasiids- an emerging problem for European inland waters? systematic and parasitological aspects. Acta Ichthyologica et Piscatorial., 39 (2): 131–138. 196 ‫مجلة البصرة للعلوم الزراعية‪ ،‬المجلد ‪( 62‬العدد الخاص ‪6112 ،)1‬‬ ‫أول تسجيل لسمكة الجري المخطط ‪Pangasianodon hypophthalmus‬‬ ‫)‪ (Pisces: Pangasiidae) (Sauvage, 1878‬من المياه الداخمية في العراق‬ ‫نجم رجب خميس‪ ،‬أثير حسين عمي‪ ،‬جاسم محسن عبد وثامر قاطع عداي‬ ‫قسم األسماك والثروة البحرية‪ ،‬كمية الزراعة‪ ،‬جامعة البصرة‪ ،‬العراق‬ ‫الخالصة‪ .‬عثر عمى نموذجين من أسماك الجري المخطط عائمة ‪ Pangasiidae‬من مسطحين مائيين مختمفين ألول مرة في العراق‪ .‬جمع‬ ‫النموذج االول بطول كمي ‪ 76.6‬ممم من هور ابن نجم أثناء دراسة عمى طفيميات األسماك في وسط العراق خالل عام ‪ .2002‬جمع النموذج‬ ‫الثاني بطول كمي ‪ 312‬ممم من شط البصرة أثناء مسح لألسماك المتواجدة هناك خالل عام ‪ .2011‬فحص ‪ 12‬نموذج من أسماك نفس العائمة‬ ‫من أحواض الزينة (المستوردة من الفمبين) وسجمت الصفات المظهرية والعددية لها ألجل المقارنة‪ .‬أوضحت النتائج أن نموذجي المياه الطبيعية‬ ‫ينطبقا بمواصفاتهما مع عينات أحواض اسماك الزينة‪ ،‬وجميع النماذج صنفت عمى أنها سمك الجري من جنس ‪ Pangasianodon‬والنوع ‪P.‬‬ ‫)‪ .hypophthalmus (Sauvage, 1878‬اعتبر التواجد الجديد لهذه األسماك في المياه الطبيعية العراقية كنتيجة هروب من أحواض الزينة‪.‬‬ ‫‪197‬‬