Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

The western mosquitofish (Gambusia affinis affinis): a new laboratory animal resource for the study of sexual dimorphism in neural circuits

Abstract

The western mosquitofish (Gambusia affinis affinis) is a useful model for the study of sexual dimorphism and the neural circuits associated with sexual differentiation. This is largely because of its anal fin, which undergoes radical postnatal transformation in males. Understanding the neural mechanisms involved in this process may also help elucidate basic principles of the nervous system. The authors describe the mosquitofish as a model for research and present guidelines for the care and use of this species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Western mosquitofish (Gambusia affinis affinis).
Figure 2: Spinal motor neuron and synapses.
Figure 3: Housing setup for mosquitofish.
Figure 4: Gravid and newborn mosquitofish.

Similar content being viewed by others

References

  1. Krogh, A. The progress of physiology. Am. J. Physiol. 90, 243–251 (1929).

    Article  Google Scholar 

  2. Krebs, H.A. The August Krogh Principle: “For many problems there is an animal on which it can be most conveniently studied.” J. Exp. Zool. 194, 221–226 (1975).

    Article  CAS  Google Scholar 

  3. Krebs, H.A. & Krebs, J.R. The “August Krogh Principle.” Comp. Biochem. Physiol. 67B, 379–380 (1980).

    Google Scholar 

  4. Marder, E. Models identify hidden assumptions. Nat. Neurosci. 3, 1198 (2000).

    Article  CAS  Google Scholar 

  5. Marder, E. Non-mammalian models for studying neural development and function. Nature 417, 318–321 (2002).

    Article  CAS  Google Scholar 

  6. Baird, S.F. & Girard, G. Descriptions of new species of fishes collected by Mr. J. H. Clark on the U. S. and Mexican boundary survey under Lt. Col. J. D. Graham. Proc. Acad. Nat. Sci. Phila. 6, 390 (1854).

    Google Scholar 

  7. Rosa-Molinar, E., Hendricks, S.E., Rodriguez-Sierra, J.F. & Fritzsch, B. The development of the anal fin appendicular support in the western mosquitofish, Gambusia affinis affinis (Baird and Girard, 1854): a reinvestigation and reinterpretation. Acta Anat. 151, 20–35 (1994).

    Article  CAS  Google Scholar 

  8. Rosa-Molinar, E., Fritzsch, B. & Hendricks, S.E. Organizational-activational concept revisited: sexual differentiation in an atherinomorph teleost. Horm. Behav. 30, 563–575 (1996).

    Article  CAS  Google Scholar 

  9. Rosa-Molinar, E., Proskocil, B.J., Hendricks, S.E. & Fritzsch, B. A mechanism for anterior transposition of the anal fin and its appendicular support in the western mosquitofish, Gambusia affinis affinis (Baird and Girard, 1854). Acta Anat. 163, 75–91 (1998).

    Article  CAS  Google Scholar 

  10. Rosa-Molinar, E. in Viviparous Fishes (eds. Uribe, M.C.A. & Grier, H.J) 66–70 (New Life Publications, Inc., Homestead, FL, 2005).

    Google Scholar 

  11. Holtfreter, J. in The Emergence of Order in Developing Systems: 27th Symposium of the Society for Developmental Biology (ed. Locke, M.) 19–20 (Academic, London, 1968).

    Google Scholar 

  12. Parenti, L.R. A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha). Bull. Am. Mus. Nat. Hist. 168, 335–557 (1981).

    Google Scholar 

  13. Parenti, L.R. Relationship of atherinomorph fishes (Teleostei). Bull. Mar. Sci. 52, 170–196 (1993).

    Google Scholar 

  14. Rosen, D.E. & Gordon, M. Functional anatomy and evolution of male genitalia in poeciliid fishes. Zoologica 38, 1–52 (1953).

    Google Scholar 

  15. Rosen D.E. & Bailey, R.M. The poeciliid fishes (Cyprinodontiformes) their structure, zoogeography, and systematics. Bull. Am. Mus. Nat. Hist. 126, 1–176 (1963).

    Google Scholar 

  16. Krumholz, L.A. Reproduction of the western mosquitofish, Gambusia affinis (Baird and Girard), and its use in mosquito control. Ecol. Monogr. 18, 1–43 (1948).

    Article  Google Scholar 

  17. Fetcho, J.R., Higashijima S.I. & McLean, D.L. Zebrafish and motor control over the last decade. Brain Res. Rev. 57, 86–93 (2008).

    Article  Google Scholar 

  18. Fetcho, J.R. & Liu, K.S. Zebrafish as a model system for studying neuronal circuits and behavior. Ann. NY Acad. Sci. 860, 333–345 (1998).

    Article  CAS  Google Scholar 

  19. Driever, W., Stemple, D., Schier, A. & Solnica-Krezel, L. Zebrafish: genetic tools for studying vertebrate development. Trends Genet. 10, 152–159 (1994).

    Article  CAS  Google Scholar 

  20. Rauchenberger, M. Systematics and biogeography of the genus Gambusia (Cyprinodontiformes, Poeciliidae). Amer. Mus. Novit. 2591 (1989).

  21. Parenti, L.R. & Song, J. in Interrelationships of Fishes (eds. Stiassny, M.L.J., Parenti, L.R. & Johnson, G.D.) 427–444 (Academic, San Diego, 1996).

    Book  Google Scholar 

  22. Lauder, G.V. & Liem, H.F. The evolution and interrelationships of the actinopterygian fishes. Bull. Mus. Comp. Zool. 150, 95–197 (1983).

    Google Scholar 

  23. Powers, D.A. Fish as model systems. Science 246, 352–358 (1989).

    Article  CAS  Google Scholar 

  24. May, E.B., Bennett, R.O., Lipsky, M.M. & Reimschuessel, R. Using fish as models in biomedical research. Lab Anim. (NY) 16, 23–28 (1987).

    Google Scholar 

  25. May, E.B., Bennett, R.O., Lipsky, M.M. & Reimschuessel, R. Using fish as models in biomedical research. Lab Anim. (NY) 16, 25–31 (1987).

    Google Scholar 

  26. Wolke, R. The use of fish in biomedical research. Comp. Pathol. Bull. 16, 1–6 (1984).

    Google Scholar 

  27. Institute of Laboratory Animal Resources, National Research Council. Guide for the Care and Use of Laboratory Animals 140 (National Academy Press, Washington, DC, 1996).

  28. American Society of Ichthyologists and Herpetologists, American Fisheries Society and American Institute of Research Biologists. Guidelines for use of fishes in field research. Fisheries 13, 16–23 (1988).

  29. DeTolla, L.J. et al. Guidelines for the Care and Use of Fish in Research. ILAR J. 37, 159–173 (1995).

    Article  Google Scholar 

  30. Winterbottom, R. A descriptive synonymy of striated muscles of teleostei. Proc. Acad. Natl. Sci. USA 125, 225–317 (1974).

    Google Scholar 

  31. Rosa-Molinar, E. Proskocil, B.J., Ettel, M. & Fritzsch, B. Whole-mount procedures for simultaneous visualization of nerves, neurons, cartilage, and bone. Brain Res. Prot. 4, 115–123 (1999).

    Article  CAS  Google Scholar 

  32. Getting, P.A. Emerging principles governing the operation of neural networks. Annu. Rev. Neurosci. 12, 185–204 (1989).

    Article  CAS  Google Scholar 

  33. Wendelaar Bonga, S.E. The stress response in fish. Physiol. Rev. 77, 591–625 (1997).

    Article  CAS  Google Scholar 

  34. Wedemeyer, G.A. in Fish Stress and Health in Aquaculture (eds. Iwama, G.K., Pickering, A.D., Sumpter, J.P. & Schreck, C.B.) 35–71 (Cambridge Univ. Press, Cambridge, UK, 1997).

    Google Scholar 

  35. Piper, R.G.G., McCraren, J.P., McElwain, I.B., Orme, L.E. & Fowler, L.G. Fish Hatchery Management 517 (American Fisheries Society, Bethesda, MD 2002).

    Google Scholar 

  36. Tomasso, J.R. in Fish Medicine (ed. Stoskopf, M.K.) 240–246 (WB Saunders, Philadelphia, 1993).

    Google Scholar 

  37. Tucker, C.S. in Fish Medicine (ed. Stoskopf, M.K.) 166–197 (WB Saunders, Philadelphia, 1993).

    Google Scholar 

  38. Winton, J.R. in Fish Hatchery Management 2nd edn. (ed. Wedemeyer, G.A.) 594–611 (American Fisheries Society, Bethesda, MD, 2002).

    Google Scholar 

  39. Stoskopf, M.K. in Fish Medicine (ed. Stoskopf, M.K.) 62–78 (WB Saunders, Philadelphia, 1993).

    Google Scholar 

  40. Stoskopf, M.K. in The Care and Use of Amphibians, Reptiles, and Fish in Research (eds. Schaeffer, D.O., Kleinow, K.M. & Krulisch, L.) 136–141 (Scientists Center for Animal Welfare, Bethesda, MD, 1992).

    Google Scholar 

  41. Thune, R.L., Stanley, L.A. & Cooper, R.K. Pathogenesis of Gram-negative bacterial infections in warmwater fish. Ann. Rev. Fish Dis. 3, 37–68 (1993).

    Article  Google Scholar 

  42. Barrows, F.T. & Hardy, R.W. in Fish Hatchery Management 2nd edn. (ed. Wedemeyer, G.A.) 483–558 (American Fisheries Society, Bethesda, MD, 2002).

    Google Scholar 

  43. Hardy, R.W. in Fish Nutrition (ed. Halver, J.E.) 475–548 (Academic, London, 1989).

    Google Scholar 

  44. Collier, A. The mechanism of internal fertilization in Gambusia. Copeia 1, 45–53 (1936).

    Article  Google Scholar 

  45. Peden, A.E. The function of gonopodial parts and behavioral patterns during copulation by Gambusia. (Poeciliidae). Can. J . Zool. 50, 955–967 (1972).

    Article  Google Scholar 

  46. Peden, A.E. Differences in the external genitalia of female gambusiin fishes. Southwest Nat. 17, 265–272 (1972).

    Article  Google Scholar 

  47. Rose, J.D. The neurobehavioral nature of fishes and the question of awareness and pain. Rev. Fisheries Sci. 10, 1–38 (2002).

    Article  Google Scholar 

  48. Stoskopf, M.K. in Aquaculture for Veterinarians (ed. Brown, L.) 161–167 (Pergamon, New York, 1993).

    Google Scholar 

  49. Summerfelt, R.C. & Smith, L.S. in Methods for Fish Biology (eds. Schreck, C.B. & Moyle, P.B.) 213–272 (American Fisheries Society, Bethesda, MD, 1990).

    Google Scholar 

  50. Matthews, J.L. et al. Pseudoloma neurophilia n. g., n. sp., a new microsporidium from the central nervous system of the zebrafish, Danio rerio. J. Eukaryot. Microbiol. 48, 227–233 (2001).

    Article  CAS  Google Scholar 

  51. Kent, M.L. & Bishop-Stewart, J.K. Transmission and tissue distribution of Pseudoloma neurophilia (Microsporidia) of zebrafish, Danio rerio (Hamilton). J. Fish Dis. 26, 423–426 (2003).

    Article  CAS  Google Scholar 

  52. Rosen, D. The Care and Breeding of Laboratory Animals 379 (Wiley & Sons, New York, 1950).

    Google Scholar 

  53. American Veterinary Medical Association. AVMA Guidelines on Euthanasia [online] (2007).

Download references

Acknowledgements

We thank Jo Taylor for helpful discussions and editorial comments. We thank Aquatic Habitats and Millipore Corporation for past and continued support in the development of the mosquitofish as a laboratory resource. We also thank Nikon Instrument's Nikon Research Alliance Program, specifically Ella de los Santos de Schwartz and Danilo Rosado-Sanchez, for access to cutting-edge imaging technology and technical support. Finally, we acknowledge the contributions of past members of the Biological Imaging Group who are too numerous to mention individually. Portions of this manuscript were presented at the 2006 meeting of the American Association for Laboratory Animal Science. Research in E.R-M.'s laboratory is supported by grants from the National Science Foundation (grant number NSF/IBN-0091120) and the National Institute of Neurological Disorders and Stroke (grant number NIH/5U54 NS30405-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Rosa-Molinar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosario-Ortiz, L., Rivera-Pabon, S., Torres-Vázquez, I. et al. The western mosquitofish (Gambusia affinis affinis): a new laboratory animal resource for the study of sexual dimorphism in neural circuits. Lab Anim 37, 263–269 (2008). https://doi.org/10.1038/laban0608-263

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban0608-263

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing