12.09.2017 Views

Profile of traditional smoking striped catfish (Pangasius hypophthalmus Sauvage 1878) and firewood used in province of riau, Indonesia

Abstract This study was aimed to describe the profile of traditional striped catfish (Pangasius hypophthalmus Sauvage) smoking in Province of Riau, Indonesia. The study was collected data about the method of traditional smoking by survey. The survey was followed by the sampling and the laboratory analysis on the profile of produced smoked catfish and the best type of firewood used for fuel and smoke source. The laboratory analysis includes physico-chemical characteristics and sensory analyses. Results showed that fish smoking in Riau is applying direct hot smoking method. The smoking process is conducted in two stages. The first stage is roasting at the smoking temperature of 60-90°C for four hours, continued with drying stage at the smoking temperature of 40° C for about five hours. The product of smoked catfish was blackish brown, shiny, dry and clay textured, and the weight reduced to 31% from initial weight. The best type of firewood was Laban (Vitex pubescens Vahl). The smoked catfish using Laban firewood as smoke source showed the highest content of total phenols 0.060 ± 0.003%, with the value of aw 0.680 ± 0.05, and pH 6.65 ± 0.12. The smoked catfish produced was the most preferred by panelists, especially its appearance and odor, with the average of sensory value 7.4. This sensory value is above the minimum standard value 7.0 determined by the Agency of National Standard in Indonesia for smoked fish.

Abstract
This study was aimed to describe the profile of traditional striped catfish (Pangasius hypophthalmus Sauvage) smoking in Province of Riau, Indonesia. The study was collected data about the method of traditional smoking by survey. The survey was followed by the sampling and the laboratory analysis on the profile of produced smoked catfish and the best type of firewood used for fuel and smoke source. The laboratory analysis includes physico-chemical characteristics and sensory analyses. Results showed that fish smoking in Riau is applying direct hot smoking method. The smoking process is conducted in two stages. The first stage is roasting at the smoking temperature of 60-90°C for four hours, continued with drying stage at the smoking temperature of 40° C for about five hours. The product of smoked catfish was blackish brown, shiny, dry and clay textured, and the weight reduced to 31% from initial weight. The best type of firewood was Laban (Vitex pubescens Vahl). The smoked catfish using Laban firewood as smoke source showed the highest content of total phenols 0.060 ± 0.003%, with the value of aw 0.680 ± 0.05, and pH 6.65 ± 0.12. The smoked catfish produced was the most preferred by panelists, especially its appearance and odor, with the average of sensory value 7.4. This sensory value is above the minimum standard value 7.0 determined by the Agency of National Standard in Indonesia for smoked fish.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

J. Bio. & Env. Sci. 2014<br />

Journal <strong>of</strong> Biodiversity <strong>and</strong> Environmental Sciences (JBES)<br />

ISSN: 2220-6663 (Pr<strong>in</strong>t) 2222-3045 (Onl<strong>in</strong>e)<br />

Vol. 5, No. 1, p. 562-572, 2014<br />

http://www.<strong>in</strong>nspub.net<br />

RESEARCH PAPER<br />

OPEN ACCESS<br />

<strong>Pr<strong>of</strong>ile</strong> <strong>of</strong> <strong>traditional</strong> <strong>smok<strong>in</strong>g</strong> <strong>striped</strong> <strong>catfish</strong> (<strong>Pangasius</strong><br />

<strong>hypophthalmus</strong> <strong>Sauvage</strong> <strong>1878</strong>) <strong>and</strong> <strong>firewood</strong> <strong>used</strong> <strong>in</strong> prov<strong>in</strong>ce <strong>of</strong><br />

<strong>riau</strong>, <strong>Indonesia</strong><br />

Tjipto Leksono 1,2* , Eddy Suprayitno 3 , Hari Purnomo 4, Hardoko 3<br />

1<br />

Department <strong>of</strong> Fish Process<strong>in</strong>g <strong>and</strong> Technology, Faculty <strong>of</strong> Fisheries <strong>and</strong> Mar<strong>in</strong>e Science,<br />

University <strong>of</strong> Riau, Pekanbaru, <strong>Indonesia</strong><br />

2<br />

Doctoral Program <strong>of</strong> Fisheries <strong>and</strong> Mar<strong>in</strong>e Science, Faculty <strong>of</strong> Fisheries <strong>and</strong> Mar<strong>in</strong>e Science,<br />

University <strong>of</strong> Brawijaya, Malang, <strong>Indonesia</strong><br />

3<br />

Department <strong>of</strong> Fish Process<strong>in</strong>g <strong>and</strong> Technology, Faculty <strong>of</strong> Fisheries <strong>and</strong> Mar<strong>in</strong>e Science,<br />

University <strong>of</strong> Brawijaya, Malang, <strong>Indonesia</strong><br />

4<br />

Department <strong>of</strong> Animal Food Technology, Faculty <strong>of</strong> Animal Husb<strong>and</strong>ry, University <strong>of</strong> Brawijaya,<br />

Malang, <strong>Indonesia</strong><br />

Article published on July 27, 2014<br />

Key words: hardwood, hot <strong>smok<strong>in</strong>g</strong>, Vitex pubescens, phenolic compound, smoke flavor.<br />

Abstract<br />

This study was aimed to describe the pr<strong>of</strong>ile <strong>of</strong> <strong>traditional</strong> <strong>striped</strong> <strong>catfish</strong> (<strong>Pangasius</strong> <strong>hypophthalmus</strong> <strong>Sauvage</strong>)<br />

<strong>smok<strong>in</strong>g</strong> <strong>in</strong> Prov<strong>in</strong>ce <strong>of</strong> Riau, <strong>Indonesia</strong>. The study was collected data about the method <strong>of</strong> <strong>traditional</strong> <strong>smok<strong>in</strong>g</strong> by<br />

survey. The survey was followed by the sampl<strong>in</strong>g <strong>and</strong> the laboratory analysis on the pr<strong>of</strong>ile <strong>of</strong> produced smoked<br />

<strong>catfish</strong> <strong>and</strong> the best type <strong>of</strong> <strong>firewood</strong> <strong>used</strong> for fuel <strong>and</strong> smoke source. The laboratory analysis <strong>in</strong>cludes physicochemical<br />

characteristics <strong>and</strong> sensory analyses. Results showed that fish <strong>smok<strong>in</strong>g</strong> <strong>in</strong> Riau is apply<strong>in</strong>g direct hot<br />

<strong>smok<strong>in</strong>g</strong> method. The <strong>smok<strong>in</strong>g</strong> process is conducted <strong>in</strong> two stages. The first stage is roast<strong>in</strong>g at the <strong>smok<strong>in</strong>g</strong><br />

temperature <strong>of</strong> 60-90°C for four hours, cont<strong>in</strong>ued with dry<strong>in</strong>g stage at the <strong>smok<strong>in</strong>g</strong> temperature <strong>of</strong> 40° C for<br />

about five hours. The product <strong>of</strong> smoked <strong>catfish</strong> was blackish brown, sh<strong>in</strong>y, dry <strong>and</strong> clay textured, <strong>and</strong> the weight<br />

reduced to 31% from <strong>in</strong>itial weight. The best type <strong>of</strong> <strong>firewood</strong> was Laban (Vitex pubescens Vahl). The smoked<br />

<strong>catfish</strong> us<strong>in</strong>g Laban <strong>firewood</strong> as smoke source showed the highest content <strong>of</strong> total phenols 0.060 ± 0.003%, with<br />

the value <strong>of</strong> aw 0.680 ± 0.05, <strong>and</strong> pH 6.65 ± 0.12. The smoked <strong>catfish</strong> produced was the most preferred by<br />

panelists, especially its appearance <strong>and</strong> odor, with the average <strong>of</strong> sensory value 7.4. This sensory value is above<br />

the m<strong>in</strong>imum st<strong>and</strong>ard value 7.0 determ<strong>in</strong>ed by the Agency <strong>of</strong> National St<strong>and</strong>ard <strong>in</strong> <strong>Indonesia</strong> for smoked fish.<br />

* Correspond<strong>in</strong>g Author: Tjipto Leksono t_leksono@ymail.com<br />

562 | Leksono et al.


J. Bio. & Env. Sci. 2014<br />

Introduction<br />

Fish <strong>smok<strong>in</strong>g</strong> conducted <strong>in</strong> Prov<strong>in</strong>ce <strong>of</strong> Riau<br />

<strong>Indonesia</strong> was aimed to provide smoke flavor to the<br />

fish <strong>and</strong> simultaneously to extend the shelf life <strong>of</strong> the<br />

smoked fish. Several studies conducted by Girard<br />

(1992), Sikorski (2005 ) <strong>and</strong> Visciano et al. (2008)<br />

showed that <strong>smok<strong>in</strong>g</strong> on various food products is a<br />

preservation method that not only <strong>in</strong>creases the shelf<br />

life, but also gives the dist<strong>in</strong>ctive flavor <strong>and</strong> color <strong>of</strong><br />

the product. Pszczola (1995) emphasized that the<br />

ma<strong>in</strong> purpose <strong>of</strong> <strong>smok<strong>in</strong>g</strong> is to provide the desired<br />

flavor <strong>and</strong> color <strong>of</strong> the product due to the presence <strong>of</strong><br />

phenol <strong>and</strong> carbonyl compounds <strong>in</strong> smoke. Another<br />

purpose is to preserve the smoked product, because<br />

the content <strong>of</strong> acids <strong>and</strong> phenolic compounds act as<br />

antibacterial <strong>and</strong> antioxidant. However, recent<br />

development reported by Varlet et al. (2007) was that<br />

the preference <strong>of</strong> consumers <strong>in</strong> Europe to smoked fish<br />

preferred more due to the smoke flavor <strong>and</strong> aroma on<br />

the fish rather than its shelf life.<br />

There are several factors that affect to the<br />

characteristics <strong>of</strong> the produced smoke dur<strong>in</strong>g<br />

combustion process <strong>of</strong> the wood. Guillen <strong>and</strong><br />

Ibargoitia (1999) noted several affect<strong>in</strong>g factors, such<br />

as types <strong>of</strong> wood or fuel material (Baltes et al., 1981;<br />

Maga <strong>and</strong> Chen, 1985), the temperature dur<strong>in</strong>g the<br />

<strong>smok<strong>in</strong>g</strong> process (Hamm <strong>and</strong> Potthast, 1976; Toth,<br />

1980; Maga <strong>and</strong> Chen, 1985), the air volume dur<strong>in</strong>g<br />

<strong>smok<strong>in</strong>g</strong> process (Daun, 1972), <strong>and</strong> the size <strong>of</strong> the<br />

wood pieces <strong>and</strong> moisture content <strong>of</strong> the wood (Maga<br />

<strong>and</strong> Chen, 1985).<br />

The different materials <strong>of</strong> <strong>firewood</strong> produce the<br />

different complex chemical composition. The<br />

chemical composition <strong>of</strong> the wood is a mixture <strong>of</strong><br />

structural volatile <strong>and</strong> non-volatile compounds with<br />

the different sensory characteristics, such as phenol,<br />

guaiacol <strong>and</strong> syr<strong>in</strong>gol <strong>and</strong> their respective derivatives<br />

(Kostyra <strong>and</strong> Baryłko-Pikielna, 2006). Phenol is a<br />

major contributor to the wood smoke flavor, but other<br />

compound groups are also important. Some phenolic<br />

compounds, namely guaiacol, 4-methylphenol <strong>and</strong><br />

2,6-dimethoxyphenol, have been described as hav<strong>in</strong>g<br />

a smoky odor (Maga, 1988). F<strong>in</strong>e types <strong>of</strong> <strong>firewood</strong> for<br />

<strong>smok<strong>in</strong>g</strong> fuel are the types <strong>of</strong> hardwood. Smoke<br />

generated from the burn<strong>in</strong>g <strong>of</strong> hardwood will have<br />

different composition to the smoke generated from<br />

s<strong>of</strong>twood. In general, hardwood will produce superior<br />

flavor, higher content <strong>of</strong> aromatic <strong>and</strong> acidic<br />

compounds more than those produced by s<strong>of</strong>twood<br />

(Girard, 1992). Murniyati <strong>and</strong> Sunarman (2000) also<br />

<strong>in</strong>formed that wood res<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g is not good for<br />

<strong>smok<strong>in</strong>g</strong> fish for caus<strong>in</strong>g unpleasant odor <strong>and</strong> taste.<br />

The process <strong>of</strong> smoked fish <strong>in</strong> Riau generally uses any<br />

type <strong>of</strong> <strong>firewood</strong> as smoke fuel, depend<strong>in</strong>g on the<br />

availability <strong>of</strong> the wood surround<strong>in</strong>g the <strong>smok<strong>in</strong>g</strong><br />

place (Leksono et al., 2009). Some types <strong>of</strong> <strong>firewood</strong><br />

<strong>used</strong> as smoke fuel were Laban wood (Vitex<br />

pubescens Vahl), Medang wood (Litsea firma<br />

(Blume) Hook. f.), <strong>and</strong> Rambutan wood (Nephelium<br />

lappaceum L.). The use <strong>of</strong> these three types <strong>of</strong><br />

<strong>firewood</strong> could produce bright <strong>and</strong> sh<strong>in</strong>y smoked fish,<br />

with the aroma <strong>and</strong> flavor that were highly preferred<br />

by consumers. The results <strong>of</strong> this study provide<br />

<strong>in</strong>formation about <strong>striped</strong> <strong>catfish</strong> (<strong>Pangasius</strong><br />

<strong>hypophthalmus</strong>) <strong>smok<strong>in</strong>g</strong> <strong>in</strong> Prov<strong>in</strong>ce <strong>of</strong> Riau<br />

<strong>Indonesia</strong>, <strong>in</strong>cludes the methods <strong>and</strong> the process <strong>of</strong><br />

<strong>traditional</strong> <strong>catfish</strong> <strong>smok<strong>in</strong>g</strong> <strong>and</strong> a type <strong>of</strong> <strong>firewood</strong><br />

which produce the best flavor <strong>of</strong> smoked <strong>catfish</strong>.<br />

Materials <strong>and</strong> methods<br />

Sampl<strong>in</strong>g<br />

The sample <strong>used</strong> <strong>in</strong> the research was <strong>striped</strong> <strong>catfish</strong><br />

(<strong>Pangasius</strong> <strong>hypophthalmus</strong>), a species <strong>of</strong> freshwater<br />

<strong>catfish</strong> usually processed as smoked fish <strong>in</strong> Prov<strong>in</strong>ce<br />

<strong>of</strong> Riau, <strong>Indonesia</strong>. The fish was cultured <strong>in</strong> pond <strong>and</strong><br />

their condition was fresh for <strong>smok<strong>in</strong>g</strong>, because it was<br />

alive when h<strong>and</strong>led. The weight <strong>of</strong> <strong>catfish</strong> samples<br />

were 225-275 g each.<br />

Three types <strong>of</strong> <strong>firewood</strong> <strong>used</strong> as <strong>smok<strong>in</strong>g</strong> fuel were the<br />

types <strong>of</strong> hard wood. They were Laban (Vitex<br />

pubescens), Medang (Litsea firma), <strong>and</strong> Rambutan<br />

(Nephelium lappaceum). The diameter <strong>of</strong> woods was<br />

8-12 cm. They were sun-dried for several days before<br />

<strong>used</strong>.<br />

563 | Leksono et al.


J. Bio. & Env. Sci. 2014<br />

Survey Method<br />

The first step <strong>of</strong> the study was conduct<strong>in</strong>g surveys on<br />

the <strong>traditional</strong> smoked fish <strong>in</strong> Prov<strong>in</strong>ce <strong>of</strong> Riau,<br />

<strong>Indonesia</strong>. The survey was conducted by us<strong>in</strong>g a<br />

purposive sampl<strong>in</strong>g method (Tongco, 2007), based on<br />

the regional development center <strong>of</strong> the farm<strong>in</strong>g <strong>and</strong><br />

process<strong>in</strong>g <strong>of</strong> <strong>catfish</strong> <strong>in</strong> the prov<strong>in</strong>ce. We observe the<br />

pr<strong>of</strong>ile <strong>of</strong> <strong>traditional</strong> <strong>smok<strong>in</strong>g</strong> <strong>of</strong> <strong>catfish</strong>, <strong>in</strong>clud<strong>in</strong>g the<br />

<strong>smok<strong>in</strong>g</strong> method <strong>and</strong> process, the <strong>smok<strong>in</strong>g</strong> time <strong>and</strong><br />

temperature, <strong>and</strong> the types <strong>of</strong> <strong>firewood</strong> <strong>used</strong> as fuel<br />

<strong>and</strong> smoke source.<br />

Data Analysis<br />

The survey was followed by laboratory analysis on the<br />

pr<strong>of</strong>ile <strong>and</strong> type <strong>of</strong> wood <strong>used</strong> for smoke fuel. The<br />

sample <strong>of</strong> smoked fish were identified <strong>and</strong> compared<br />

based on the difference <strong>of</strong> the <strong>used</strong> <strong>firewood</strong> types as<br />

fuel for <strong>catfish</strong> <strong>smok<strong>in</strong>g</strong>. Each sample was collected<br />

from three different fish <strong>smok<strong>in</strong>g</strong> units <strong>and</strong> analyzed<br />

for their physico-chemical characteristic, consumer<br />

preference, <strong>and</strong> identification <strong>of</strong> its volatile<br />

compound.<br />

<strong>and</strong> the data were subjected to statistical evaluation<br />

us<strong>in</strong>g Genstat 15. Advanced test <strong>of</strong> Least Significant<br />

Difference (LSD) with P


J. Bio. & Env. Sci. 2014<br />

roast<strong>in</strong>g was dry<strong>in</strong>g. The dry<strong>in</strong>g stage was conducted<br />

by reduc<strong>in</strong>g the flame <strong>of</strong> <strong>firewood</strong> burn<strong>in</strong>g <strong>and</strong> turned<br />

to temperature <strong>of</strong> 40°C for five hours. The <strong>smok<strong>in</strong>g</strong><br />

process was f<strong>in</strong>ished when the smoked <strong>catfish</strong> is<br />

blackish brown, sh<strong>in</strong>y, dry <strong>and</strong> clay textured, <strong>and</strong> the<br />

weight was reduced to 31% <strong>of</strong> <strong>in</strong>itial weight.<br />

Smok<strong>in</strong>g the fish at high temperature cooked the<br />

smoked <strong>striped</strong> <strong>catfish</strong>. The cooked fish can be<br />

achieved when the moisture content <strong>in</strong> the air<br />

<strong>in</strong>creased <strong>and</strong> raised the temperature <strong>of</strong> the fish’s<br />

flesh (Afrianto <strong>and</strong> Liviawaty, 2005). Ghozali et al.<br />

(2004) also proved that <strong>smok<strong>in</strong>g</strong> the fish at<br />

temperature <strong>of</strong> 50°C or more was caus<strong>in</strong>g the smoked<br />

fish cooked. Swastawati et al. (2012) stated that the<br />

high temperature dur<strong>in</strong>g fish process<strong>in</strong>g was caus<strong>in</strong>g<br />

to denaturation <strong>of</strong> fish prote<strong>in</strong>.<br />

Catfish was dehydrated <strong>and</strong> its moisture reduced due<br />

to the heat<strong>in</strong>g <strong>of</strong> <strong>smok<strong>in</strong>g</strong> chamber by the flame <strong>of</strong><br />

<strong>firewood</strong> dur<strong>in</strong>g the <strong>smok<strong>in</strong>g</strong> process. The heat<strong>in</strong>g <strong>of</strong><br />

air <strong>in</strong> the <strong>smok<strong>in</strong>g</strong> chamber ca<strong>used</strong> the hot air flew out<br />

<strong>of</strong> the chamber, thus lowered the humidity <strong>in</strong> the<br />

<strong>smok<strong>in</strong>g</strong> chamber. The low humidity <strong>of</strong> the air <strong>in</strong> the<br />

<strong>smok<strong>in</strong>g</strong> chamber will draw water from the fish flesh,<br />

until the equilibrium <strong>of</strong> water vapor pressure <strong>in</strong> the<br />

flesh <strong>and</strong> <strong>in</strong> the air around the fish’s surface. This<br />

condition is shown by the low value <strong>of</strong> aw <strong>in</strong> smoked<br />

fish. Storey (1982) stated that the velocity <strong>of</strong> air flow<br />

<strong>and</strong> humidity will determ<strong>in</strong>e how quick the fish to dry.<br />

Smoked <strong>catfish</strong> with <strong>traditional</strong> <strong>smok<strong>in</strong>g</strong> <strong>in</strong> Riau can<br />

be stored for more than a month at room temperature<br />

(28-31°C). Beside <strong>of</strong> its dry texture, the smoked fish<br />

also conta<strong>in</strong>s some preservative compound derived<br />

from smoke, namely phenolic <strong>and</strong> acid compounds.<br />

The <strong>smok<strong>in</strong>g</strong> can extend the shelf life <strong>of</strong> fish products<br />

by <strong>in</strong>hibit<strong>in</strong>g the activity <strong>of</strong> enzyme (Lakshmanan et<br />

al., 2003) <strong>and</strong> suppress the growth <strong>of</strong> microbes<br />

(Truelstrup et al., 1996; Bugueno et al., 2003).<br />

Preservative effect is ca<strong>used</strong> by the presence <strong>of</strong> some<br />

antimicrobial <strong>and</strong> antioxidant compounds <strong>in</strong> the<br />

smoke. These compounds also give a dist<strong>in</strong>ctive color<br />

<strong>and</strong> flavor <strong>of</strong> meat or smoked fish (Hattula et al.,<br />

2001; Mart<strong>in</strong>ez et al., 2007; Muratore et al., 2007).<br />

Physico-chemical Characteristic<br />

The proximate composition <strong>of</strong> smoked <strong>striped</strong> <strong>catfish</strong><br />

was produced by us<strong>in</strong>g different types <strong>of</strong> <strong>firewood</strong>. It<br />

is <strong>in</strong>clud<strong>in</strong>g the percentage <strong>of</strong> moisture, prote<strong>in</strong>, fat,<br />

carbohydrate, <strong>and</strong> ash (Table 1). The <strong>traditional</strong><br />

smoked <strong>catfish</strong> moisture ranged 17.06 - 17.96%. It<br />

means that the smoked <strong>catfish</strong> is a dry food product,<br />

which allows to be stored <strong>in</strong> a relatively long period<br />

(more than a month) at room temperature (28-30°C).<br />

Fat content <strong>of</strong> <strong>traditional</strong> smoked <strong>catfish</strong> ranged<br />

10.98 - 11.77%. It means that content <strong>of</strong> fat <strong>in</strong> the<br />

<strong>catfish</strong> is very high <strong>and</strong> allows the smoked <strong>catfish</strong><br />

susceptible to oxidative rancidity <strong>and</strong> hydrolysis by<br />

fungi. Meanwhile, the prote<strong>in</strong> content <strong>of</strong> smoked<br />

<strong>catfish</strong> is quite high, 61.46 - 62.16 %. It shows that the<br />

smoked <strong>catfish</strong> has a high nutrient value. The content<br />

<strong>of</strong> carbohydrate <strong>and</strong> ash <strong>of</strong> the smoked <strong>catfish</strong> ranged<br />

from 3.38 to 3.47% <strong>and</strong> from 5.72 to 5.77%,<br />

respectively. The fairly high ash content sourced from<br />

the m<strong>in</strong>eral content <strong>of</strong> <strong>catfish</strong> <strong>and</strong> smoke particles<br />

attached to the surface <strong>of</strong> the smoked <strong>catfish</strong>. All <strong>of</strong><br />

proximate composition values are not significant<br />

different (P>0.05) among smoked <strong>catfish</strong> produced<br />

by us<strong>in</strong>g different types <strong>of</strong> <strong>firewood</strong>. It means that the<br />

difference <strong>of</strong> type <strong>of</strong> <strong>firewood</strong> is not affect<strong>in</strong>g to the<br />

proximate composition values <strong>of</strong> smoked fish<br />

produced.<br />

Tabel 1. Proximate composition <strong>of</strong> smoked <strong>catfish</strong> on different types <strong>of</strong> <strong>firewood</strong>.<br />

Type <strong>of</strong><br />

Proximate composition<br />

<strong>firewood</strong> Moisture (%) Prote<strong>in</strong> (%) Fat (%) Carbohydrate (%) Ash (%)<br />

Laban 17.06 ± 0.49 a 62.16 ± 0.39 a 10.98 ± 0.42 a 3.58 ± 0.15 a 5.72 ± 0.16 a<br />

Medang 17.96 ± 0.87 a 61.46 ± 0.88 a 11.15 ± 0.39 a 3.51 ± 0.14 a 5.77 ± 0.12 a<br />

Rambutan 17.12 ± 0.13 a 61.79 ± 0.28 a 11.77 ± 0.19 a 3.57 ± 0.17 a 5.74 ± 0.14 a<br />

Note: The value is shown as a mean <strong>and</strong> a deviation st<strong>and</strong>ard (r=3). The same superscript letters with<strong>in</strong> the same<br />

column <strong>in</strong>dicate no significant difference (P>0.05)<br />

565 | Leksono et al.


J. Bio. & Env. Sci. 2014<br />

The physico-chemical characteristic <strong>of</strong> smoked<br />

<strong>striped</strong> <strong>catfish</strong> produced by us<strong>in</strong>g <strong>of</strong> different types <strong>of</strong><br />

<strong>firewood</strong> was <strong>in</strong>clud<strong>in</strong>g the value <strong>of</strong> aw, pH, total acid,<br />

<strong>and</strong> total phenol (Table 2). The content <strong>of</strong> total<br />

phenol <strong>in</strong> the smoked <strong>catfish</strong> produced by us<strong>in</strong>g<br />

Laban wood as a fuel <strong>and</strong> source <strong>of</strong> smoke <strong>in</strong>dicates<br />

the highest value (0.060 ± 0.003%), significantly<br />

different to Medang wood (P0.05). The higher content <strong>of</strong> total phenol may<br />

cause to the higher value <strong>of</strong> hedonic, especially for the<br />

value <strong>of</strong> odor <strong>and</strong> flavor. Thus, the panelists were<br />

preferred more to the smoked fish us<strong>in</strong>g Laban wood.<br />

The phenolic compounds which responsible for flavor<br />

formation <strong>in</strong> smoked food products <strong>and</strong> also have<br />

antioxidant activity which affects their shelf life<br />

(Girard, 1992). Components <strong>of</strong> phenolic compounds<br />

that have a role <strong>in</strong> the formation <strong>of</strong> flavor are<br />

guaiacol, 4-metilguaiakol <strong>and</strong> 2,6-dimetoksifenol.<br />

Guaiacol haves a role <strong>in</strong> smoky taste, while syr<strong>in</strong>gol<br />

haves a role <strong>in</strong> smoky aroma (Daun, 1979). Phenol<br />

threshold value <strong>of</strong> the smoke condensate was 0.147<br />

ppm for taste stimuli <strong>and</strong> 0.023 ppm for odor stimuli<br />

(Ruiter, 1979).<br />

Tabel 2.<br />

Physico-chemical value <strong>of</strong> smoked <strong>catfish</strong> on different types <strong>of</strong> <strong>firewood</strong>.<br />

Type <strong>of</strong><br />

Physico-chemical value<br />

Firewood<br />

aw pH Total Acid (%) Total Phenol (%)<br />

Laban 0.680 ± 0.003 a 6.55 ± 0.12 a 0.250 ± 0.023 a 0.060 ± 0.003 a<br />

Medang 0.689 ± 0.004 a 6.62 ± 0.18 a 0.262 ± 0.022 a 0.048 ± 0.002 b<br />

Rambutan 0.682 ± 0.006 a 6.56 ± 0.16 a 0.259 ± 0.035 a 0.058 ± 0.003 a<br />

Note: The value is shown as a mean <strong>and</strong> a deviation st<strong>and</strong>ard (r=3). Different superscript letters with<strong>in</strong> the same<br />

column <strong>in</strong>dicate significant difference (P


J. Bio. & Env. Sci. 2014<br />

<strong>and</strong> appearance. The appearance is brownish but<br />

sh<strong>in</strong>ier than the others. The consumer preference <strong>of</strong><br />

smoked fish was primarily based on the color <strong>of</strong> the<br />

smoked fish. The best appearance <strong>of</strong> smoked fish is<br />

characterized by its surface colour, which is golden<br />

brown (Obodai et al., 2009). Girard (1992) expla<strong>in</strong>ed<br />

that carbonyl compounds have a major <strong>in</strong>fluence on<br />

the color. Smoked product color due to the<br />

<strong>in</strong>teraction between the carbonyl am<strong>in</strong>o group<br />

through the Maillard reaction.<br />

Table 3. Hedonic score <strong>of</strong> smoked <strong>catfish</strong> produced by us<strong>in</strong>g <strong>of</strong> different types <strong>of</strong> <strong>firewood</strong>.<br />

Type <strong>of</strong> Firewood Appearance Taste Odor Texture<br />

Laban 7.5 ± 0.1 b 7.3 ± 0.2 b 7.5 ± 0.3 b 7.2 ± 0.3 a<br />

Medang 7.1 ± 0.3 a 6.8 ± 0.2 a 7.1 ± 0.1 a 7.1 ± 0.2 a<br />

Rambutan 7.3 ± 0.2 ab 7.2 ± 0.1 b 7.3 ± 0.1 ab 7.2 ± 0.1 a<br />

Note: The score <strong>of</strong> hedonic is rang<strong>in</strong>g between 1 <strong>and</strong> 9. Score 1 is the lowest score (extremely disliked), 5 (fire),<br />

<strong>and</strong> 9 is the highest score (extremely like). Hedonic score is shown as a mean <strong>and</strong> a deviation st<strong>and</strong>ard (p=25,<br />

r=3). Different superscript letters with<strong>in</strong> the same column <strong>in</strong>dicate significant difference (P0.05). It was<br />

also correlated to its lowest water content <strong>and</strong> the<br />

value <strong>of</strong> aw that was not significantly different each<br />

others.<br />

The results <strong>in</strong>dicate that the different type <strong>of</strong> <strong>firewood</strong><br />

affects the flavor <strong>of</strong> produced smoked fish. Laban<br />

wood is the best type <strong>of</strong> <strong>firewood</strong> <strong>used</strong> for smoke fuel<br />

rather than Medang wood or Rambutan wood. The<br />

taste was tastier <strong>and</strong> the odor is smokier,<br />

characteristically <strong>of</strong> smoked fish. It may be ca<strong>used</strong> by<br />

the higher <strong>of</strong> total phenol conta<strong>in</strong>ed <strong>in</strong> the smoked<br />

fish produced. Girard (1992) stated that the content<br />

<strong>of</strong> chemical components <strong>in</strong> the smoke is <strong>in</strong>fluenced by<br />

different types <strong>of</strong> wood materials <strong>used</strong>, especially the<br />

content <strong>of</strong> phenolic compound. Chemical components<br />

<strong>in</strong> the smoke can be <strong>used</strong> for determ<strong>in</strong><strong>in</strong>g the quality<br />

<strong>of</strong> the smoked products. Woody, et al. (2000)<br />

expla<strong>in</strong>ed that the effect <strong>of</strong> different types <strong>of</strong> <strong>firewood</strong><br />

to the flavor <strong>of</strong> smoked product was ca<strong>used</strong> by the<br />

formation <strong>of</strong> the basic patterns <strong>of</strong> smoke over wood<br />

decomposition by heat. Hardwood produces good<br />

color <strong>and</strong> taste <strong>of</strong> smoked product, but the <strong>smok<strong>in</strong>g</strong><br />

process will take longer time than s<strong>of</strong>twood.<br />

Smoke generated from the burn<strong>in</strong>g <strong>of</strong> hardwood will<br />

vary with the composition <strong>of</strong> smoke produced from<br />

burn<strong>in</strong>g <strong>of</strong> s<strong>of</strong>twood. The different types <strong>of</strong> materials<br />

<strong>of</strong> wood’s smoke produces different complex chemical<br />

composition, which is a mixture <strong>of</strong> structural volatil<br />

<strong>and</strong> non-volatile compounds with different sensory<br />

characteristics, such as phenol, guaiacol <strong>and</strong> syr<strong>in</strong>gol<br />

<strong>and</strong> their derivatives (Kostyra <strong>and</strong> Pikielna, 2006).<br />

Volatile compound <strong>in</strong> smoked fish<br />

The volatile compounds <strong>in</strong> smoked <strong>striped</strong> <strong>catfish</strong><br />

produced by us<strong>in</strong>g three types <strong>of</strong> <strong>firewood</strong> analyzed<br />

by us<strong>in</strong>g GC/MS were shown as the chromatogram <strong>in</strong><br />

Fig. 2. Based on the chromatogram, the volatile<br />

compounds <strong>in</strong> <strong>traditional</strong> smoked <strong>catfish</strong> are<br />

categorized <strong>in</strong>to several compound groups, as listed <strong>in</strong><br />

Table 4.<br />

567 | Leksono et al.


J. Bio. & Env. Sci. 2014<br />

Table 4. The list <strong>of</strong> volatile compounds conta<strong>in</strong>ed <strong>in</strong> <strong>traditional</strong> smoked <strong>striped</strong> <strong>catfish</strong>.<br />

Group <strong>of</strong><br />

Compound<br />

Organic<br />

Acids<br />

Phenolic<br />

Smoked by us<strong>in</strong>g<br />

Laban <strong>firewood</strong><br />

Smoked by us<strong>in</strong>g Medang<br />

<strong>firewood</strong><br />

Smoked by us<strong>in</strong>g<br />

Rambutan <strong>firewood</strong><br />

Compound<br />

name<br />

RA Compound name RA Compound name RA<br />

Acetic acid, 63.9 Acetic acid, myristic 23.0 Acetic acid, Propionic 56.0<br />

Hexadecanoic<br />

acid, benzoic acid,<br />

acid, Butanoic acid,<br />

acid, <strong>and</strong><br />

Metholene, Methyl<br />

Isopentanoic acid ,<br />

Palmit<strong>in</strong>ic acid<br />

ester oleic acid, <strong>and</strong><br />

Dodecanoic acid,<br />

2,4-Hexadienedioic<br />

Palmit<strong>in</strong>ic acid, <strong>and</strong><br />

9-Octadecenoic<br />

acid, Emersol,<br />

BHT, Creosol,<br />

Phenol, <strong>and</strong><br />

Syr<strong>in</strong>gol<br />

acid.<br />

35.5 2-Ethylhexanol ,<br />

Furfuryl alcohol, 1,3,5-<br />

tri-o-methyl-triacetate<br />

galactitol,<br />

Cyclododecanol, 2-<br />

methoxy phenol, BHT,<br />

Creosol, Phenol, 4-<br />

ethyl-2-methoxyphenol,<br />

4-methyl-2-<br />

phenyl-1,4-pentanediol,<br />

2,3-dimethyl- phenol,<br />

2-methyl-phenol,<br />

Dihydroeugenol,<br />

Isoeugenol, 2,4-<br />

dimethyl-phenol,<br />

Syr<strong>in</strong>gol,<br />

Methylsyr<strong>in</strong>gol, <strong>and</strong><br />

Methoxyeugenol<br />

Other Myristal-dehyde 0.6 Limonene, 1,2-<br />

Dichlorobenzene,<br />

Heptadecane,<br />

Cyclododecane,<br />

Pentadecane,<br />

Hexadecane, 1-methyl-<br />

2-Pyrrolid<strong>in</strong>one,<br />

Cyclododecane,<br />

Farnesene,<br />

Naphthalene,<br />

Tetratriacontane, 2,5-<br />

Dibutylfuran, <strong>and</strong> 1-<br />

methyl- 2,4-<br />

Imidazolid<strong>in</strong>edione<br />

Note: RA means relative percentage <strong>of</strong> area width (%).<br />

Myristic acid.<br />

49.8 2-ethyl-1-Hexanol, 2-<br />

methoxy phenol, BHT,<br />

Creosol, Homoguaiacol,<br />

Phenol, 4-ethyl-2-<br />

methoxy-phenol,<br />

Creosol, 2,5-dimethylphenol,<br />

Syr<strong>in</strong>gol, <strong>and</strong> 4-<br />

Methoxy-3-phenol<br />

26.8 1-hydroxy- 2-<br />

Propanone,<br />

Pentadecane,<br />

Cyclotene, 3,4-dimethyl<br />

cyclopentenolone, 5-<br />

Isopropenyl-3-<br />

isopropyl-2,2-dimethyl-<br />

2,5-dihydr<strong>of</strong>uran,<br />

3,4,5-<br />

Trimethoxytoluene,<br />

Acetoguaiacon, <strong>and</strong><br />

guaiacylacetone<br />

30.3<br />

13.8<br />

Table 4 <strong>in</strong>dicates that the volatile compounds <strong>in</strong><br />

smoked <strong>catfish</strong> produced by us<strong>in</strong>g Laban <strong>firewood</strong><br />

were dom<strong>in</strong>ated by organic acid. It showed by relative<br />

percentage <strong>of</strong> area width (RA) 63.9%, followed by<br />

Rambutan <strong>firewood</strong> <strong>and</strong> Medang <strong>firewood</strong> with the<br />

RA <strong>of</strong> 56.0% <strong>and</strong> 23.0%, respectively. Phenolic<br />

compounds was dom<strong>in</strong>ated <strong>in</strong> <strong>striped</strong> <strong>catfish</strong> smoked<br />

us<strong>in</strong>g Medang <strong>firewood</strong>, followed by Laban <strong>firewood</strong><br />

<strong>and</strong> Rambutan <strong>firewood</strong> with the RA <strong>of</strong> <strong>firewood</strong> with<br />

the RA <strong>of</strong> 49.8%, 35.5% <strong>and</strong> 30.3%, respectively.<br />

The <strong>striped</strong> <strong>catfish</strong> (<strong>Pangasius</strong> hypopthalmus)<br />

<strong>smok<strong>in</strong>g</strong> <strong>in</strong> Riau Prov<strong>in</strong>ce <strong>Indonesia</strong> was apply<strong>in</strong>g<br />

direct hot <strong>smok<strong>in</strong>g</strong> method. The best type <strong>of</strong> <strong>firewood</strong><br />

was Laban (Vitex pubescens). The smoked <strong>catfish</strong><br />

produced by us<strong>in</strong>g Laban <strong>firewood</strong> as a smoke source<br />

showed somewhat blackish brown, sh<strong>in</strong>y, dry <strong>and</strong> clay<br />

textured, <strong>and</strong> weight reduction up to 31 % <strong>of</strong> <strong>in</strong>itial<br />

weight. It was the most preferred by consumers with<br />

the average <strong>of</strong> sensory value 7.4, above the m<strong>in</strong>imum<br />

st<strong>and</strong>ard value 7.0 determ<strong>in</strong>ed by Agency <strong>of</strong> National<br />

St<strong>and</strong>ard <strong>in</strong> <strong>Indonesia</strong> for smoked fish.<br />

568 | Leksono et al.


J. Bio. & Env. Sci. 2014<br />

(i)<br />

Volatile compounds <strong>in</strong> smoked <strong>catfish</strong> produced by us<strong>in</strong>g Laban <strong>firewood</strong><br />

(ii)<br />

Volatile compounds <strong>in</strong> smoked <strong>catfish</strong> produced by us<strong>in</strong>g Medang <strong>firewood</strong><br />

(iii)<br />

Volatile compounds <strong>in</strong> smoked <strong>catfish</strong> produced by us<strong>in</strong>g Rambutan <strong>firewood</strong><br />

Fig. 2. Chromatogram <strong>of</strong> volatile compounds <strong>in</strong> <strong>traditional</strong> smoked <strong>striped</strong> <strong>catfish</strong>.<br />

569 | Leksono et al.


J. Bio. & Env. Sci. 2014<br />

It is suggested to <strong>used</strong> Laban wood as the smoke fuel<br />

<strong>and</strong> source <strong>in</strong> fish <strong>smok<strong>in</strong>g</strong>, so that it became to be a<br />

characteristically type <strong>of</strong> wood for fuel <strong>and</strong> source <strong>of</strong><br />

fish <strong>smok<strong>in</strong>g</strong> <strong>in</strong> Riau Prov<strong>in</strong>ce <strong>Indonesia</strong>.<br />

Department <strong>of</strong> Fisheries <strong>and</strong> Mar<strong>in</strong>e <strong>of</strong> Riau.<br />

2007. Annual statistics <strong>of</strong> Department <strong>of</strong> Fisheries<br />

<strong>and</strong> Mar<strong>in</strong>e, Prov<strong>in</strong>ce <strong>of</strong> Riau. Pekanbaru:<br />

Department <strong>of</strong> Mar<strong>in</strong>e <strong>and</strong> Fisheries <strong>of</strong> Riau.<br />

References<br />

Alçiçek Z, Zencir Ö, Çakirogullari, Atar HH.<br />

2010. The effect <strong>of</strong> liquid <strong>smok<strong>in</strong>g</strong> <strong>of</strong> Anchovy<br />

(Engraulis encrasicolus) fillet on sensory, meat yield,<br />

PAH content, <strong>and</strong> chemical changes. Journal <strong>of</strong><br />

Aquatic Food Product Technology 19, 264 – 273.<br />

AOAC. 2000. Official methods <strong>of</strong> analysis <strong>of</strong> the<br />

Association <strong>of</strong> Official Analytical Chemists, Vol. I. 17 th<br />

Edition. Arl<strong>in</strong>gton: Association <strong>of</strong> Analytical<br />

Chemists.<br />

AOAC. 2000. Official methods <strong>of</strong> analysis <strong>of</strong> the<br />

Association <strong>of</strong> Official Analytical Chemists, Vol. II.<br />

17 th Edition. Arl<strong>in</strong>gton: Association <strong>of</strong> Analytical<br />

Chemists.<br />

Baryłko-Pikielna N. 1992. Sensory laboratory <strong>of</strong><br />

new generation–computerized systems <strong>in</strong> sensory<br />

analysis. Przemysł Spożywczy 46, 170 – 173.<br />

Bender FE, Douglass LW, Kramer. 1984.<br />

Statistical methods for food <strong>and</strong> agriculture. New<br />

York: AVI Publish<strong>in</strong>g Company <strong>in</strong>corporated with<br />

University <strong>of</strong> Maryl<strong>and</strong>.<br />

Berkel MB, Brigiet B, Corlien H. 2004.<br />

Preservation <strong>of</strong> fish <strong>and</strong> meat, Agrodok 12, 3 rd<br />

Edition. Wagen<strong>in</strong>gen, Netherl<strong>and</strong>s: Agromisa<br />

Foundation, 46 – 53.<br />

Darmadji P. 1996. Activity <strong>of</strong> anti bacterial liquid<br />

smoke produced from various agriculture wastes.<br />

Jurnal Agriteknologi 16 (4), 19-22.<br />

Daun H. 1979. Interaction <strong>of</strong> wood smoke<br />

components <strong>and</strong> foods. Journal <strong>of</strong> Foods Technology<br />

33 (5), 67 – 71.<br />

Girard JP. 1992. Smok<strong>in</strong>g. In: Hamm<strong>in</strong>gs B,<br />

Ferr<strong>and</strong> C, Transl. Technology <strong>of</strong> meat products. New<br />

York: Ellis Harwood, 165 – 205.<br />

Guillen MD, Manzanos MJ. 1999. Extractable<br />

components <strong>of</strong> the aerial parts <strong>of</strong> Salvia<br />

lav<strong>and</strong>ulifolia <strong>and</strong> the composition <strong>of</strong> the liquid<br />

smoke flavor<strong>in</strong>g obta<strong>in</strong>ed from them. Journal <strong>of</strong><br />

Agriculture <strong>and</strong> Food Chemistry 47, 3016 – 3027.<br />

Hadiwiyoto S. 1997. Technology <strong>of</strong> fisheries<br />

process<strong>in</strong>g, Vol. I. Faculty <strong>of</strong> Agriculture, Gajah Mada<br />

University. Yogyakarta: Liberty.<br />

Hamm R. 1977. Analysis <strong>of</strong> smoke <strong>and</strong> smoked<br />

foods. Pure <strong>and</strong> Applied Chemical 49. Pergamon<br />

Press, 1665 – 1666.<br />

Hattula T, Elfv<strong>in</strong>g K, Mroueh UM, Luoma T.<br />

2001. Use <strong>of</strong> liquid smoke flavor<strong>in</strong>g as an alternative<br />

to <strong>traditional</strong> flue gas <strong>smok<strong>in</strong>g</strong> <strong>of</strong> ra<strong>in</strong>bow trout fillets<br />

(Oncorhyncus mykiss). Lebensmittel Wissenschaft<br />

<strong>and</strong> Technologie 34, 521– 525.<br />

Kostyra E, Baryłko-Pikielna N. 2006. Volatiles<br />

composition <strong>and</strong> flavor pr<strong>of</strong>ile identity <strong>of</strong> smoke<br />

flavor<strong>in</strong>gs. Journal <strong>of</strong> Food Quality <strong>and</strong> Preference 17,<br />

85 – 95.<br />

Leksono T, Padil, Aman. 2009. Application <strong>of</strong><br />

liquid smoke made <strong>of</strong> oil palm shell on fresh-water<br />

<strong>catfish</strong> (<strong>Pangasius</strong> hypopthalmus) preservation.<br />

Proceed<strong>in</strong>g <strong>of</strong> International Sem<strong>in</strong>ar from Ocean for<br />

Food Security, Energy, <strong>and</strong> Susta<strong>in</strong>able Resources<br />

<strong>and</strong> Environment. University <strong>of</strong> Airlangga, Surabaya,<br />

November 18 th .<br />

570 | Leksono et al.


J. Bio. & Env. Sci. 2014<br />

Leksono T, Suparmi. 2007. Dehydrator<br />

eng<strong>in</strong>eer<strong>in</strong>g to process dehydrated presto fish. Jurnal<br />

Perikanan dan Kelautan 13 (1), 8 – 17.<br />

Pearson AM, Tauber FW. 1984. Processed meats:<br />

<strong>smok<strong>in</strong>g</strong>, 2 nd edition. Westport, Connecticut: AVI<br />

Publisher Company Incorporation.<br />

Maga JA. 1988. Smoke <strong>in</strong> food process<strong>in</strong>g. Boca<br />

Raton, FL: CRC Press, 89 – 91.<br />

Mart<strong>in</strong>ez O, Salmeron J, Guillen MD, Casas C.<br />

2007. Sensorial <strong>and</strong> physicochemical characteristics<br />

<strong>of</strong> salmon (Salmo salar) treated by different <strong>smok<strong>in</strong>g</strong><br />

processes dur<strong>in</strong>g storage. Food Science <strong>and</strong><br />

Technology International 13 (6), 477 – 484.<br />

Plaschke K. 2003. A method for prepar<strong>in</strong>g liquid<br />

smoke. US Patent No. EP1296569. Danfo:<br />

February.<br />

Pszczola DE. 1995. Liquid smoke - a natural<br />

aqueous condensate <strong>of</strong> wood smoke provides various<br />

advantages, <strong>in</strong> addition to flavor <strong>and</strong> aroma. Journal<br />

<strong>of</strong> Food Technology 1, 70 – 74.<br />

4 th<br />

Meilgaard M, Civille GV, Carr BT. 1999. Sensory<br />

evaluation techniques. 3 rd Edition. USA: CRC Press<br />

LLC.<br />

Pszczola D.E. 1995. Tour highlights production <strong>and</strong><br />

uses <strong>of</strong> smokes based flavours. Journal <strong>of</strong> Food<br />

Technology 49 (1), 70 – 74.<br />

Moedjiharto A, Chamidah, Endang TH. 2000.<br />

The effect <strong>of</strong> immersion time <strong>and</strong> shelf life <strong>of</strong> smoked<br />

B<strong>and</strong>eng fish with liquid smoke to the value <strong>of</strong> Aw,<br />

texture, organoleptic, <strong>and</strong> microbiology. Jurnal<br />

Makanan Tradisional <strong>Indonesia</strong> 2 (2), 53 – 63.<br />

Muratore G, Mazzaglia A, Lanza CM,<br />

Licciardello. 2007. Effect <strong>of</strong> process variables on<br />

the quality <strong>of</strong> swordfish fillets flavoured with smoke<br />

condensate. Journal <strong>of</strong> Food Process<strong>in</strong>g <strong>and</strong><br />

Preservation 31 (2), 167 – 177.<br />

National St<strong>and</strong>ard <strong>of</strong> <strong>Indonesia</strong> (SNI). 1989.<br />

Quality <strong>of</strong> charcoal. Jakarta: Agency <strong>of</strong> National<br />

St<strong>and</strong>ardization <strong>of</strong> <strong>Indonesia</strong>.<br />

National St<strong>and</strong>ard <strong>of</strong> <strong>Indonesia</strong> (SNI). 2009.<br />

St<strong>and</strong>ard quality <strong>of</strong> smoked fish. SNI 2725.1:2009.<br />

Jakarta: Agency <strong>of</strong> National St<strong>and</strong>ardization <strong>of</strong><br />

<strong>Indonesia</strong>.<br />

Ruiter A. 1979. Colour <strong>of</strong> smoked foods. Journal <strong>of</strong><br />

Food Technology 33 (5), 54 – 63.<br />

Sari RN, Utomo BSD, Sedayu BB. 2007. Trial <strong>of</strong><br />

liquid smoke produc<strong>in</strong>g tool on laboratory scale<br />

Liquid Smoke with <strong>smok<strong>in</strong>g</strong> material <strong>of</strong> sawdust <strong>of</strong><br />

Jati Sabrang or Sungkai (Peronema canescens).<br />

Jurnal Pascapanen dan Bioteknologi Kelautan dan<br />

Perikanan 2 (1), 27 – 34.<br />

Simon R, Calle B, Palme S, Meier D, Anklam<br />

E. 2005. Composition <strong>and</strong> analysis <strong>of</strong> liquid smoke<br />

flavour<strong>in</strong>g primary products. Journal <strong>of</strong> Food Science<br />

28, 871– 882.<br />

Storey RM. 1982. Smok<strong>in</strong>g. In: Aitken A, Mackie<br />

IM, Merritt JH, W<strong>in</strong>dsor WL, Ed. Fish h<strong>and</strong>l<strong>in</strong>g <strong>and</strong><br />

process<strong>in</strong>g, 2 nd Edition. Ed<strong>in</strong>burgh: Torry Research<br />

Station M<strong>in</strong>istry <strong>of</strong> Agriculture, Fisheries <strong>and</strong> Food,<br />

98 – 114.<br />

Obodai EA, Muhammad BA, Obodai GA,<br />

Opoku E. 2009. Effect <strong>of</strong> fuel wood on the quality <strong>of</strong><br />

smoked freshwater fish species sold <strong>in</strong> Tamale.<br />

Ethiopian Journal <strong>of</strong> Environmental Studies <strong>and</strong><br />

Management 2 (2), 27 – 35.<br />

Swastawati F, Agust<strong>in</strong>i TW, Darmanto YS,<br />

Dewi EN. 2007. Liquid smoke performance <strong>of</strong><br />

Lamtoro wood <strong>and</strong> corn cob. Journal <strong>of</strong> Coastal<br />

Development 10 (3), 189 – 196.<br />

571 | Leksono et al.


J. Bio. & Env. Sci. 2014<br />

Tranggono, Suhardi, Setiadji B, Supranto,<br />

Darmadji P, Sudarmanto. 1996. Identification <strong>of</strong><br />

liquid smoke <strong>of</strong> various wood <strong>and</strong> coconut shell.<br />

Jurnal Ilmu dan Teknologi Pangan 1 (2), 15 – 24.<br />

Varlet V, Serot T, Knockaert C, Cornet J,<br />

Card<strong>in</strong>al M, Monteau F, Le Bizec B, Prost C.<br />

2007. Organoleptic characteristic <strong>and</strong> PAH content <strong>of</strong><br />

salmon (Salmo salar) fillets smoked accord<strong>in</strong>g to four<br />

<strong>in</strong>dustrial <strong>smok<strong>in</strong>g</strong> techniques. Journal <strong>of</strong> the Science<br />

<strong>of</strong> Food <strong>and</strong> Agriculture 87 (5), 847 – 854.<br />

572 | Leksono et al.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!